Habitat fragmentation reduces the extent and connectivity of suitable habitats, and can lead to changes in population genetic structure. Limited gene flow among isolated demes can result in increased genetic divergence among populations, and decreased genetic diversity within demes. We assessed patterns of genetic variation in the Caribbean boa Chilabothrus monensis (Epicrates monensis) using two mitochondrial and seven nuclear markers, and relying on the largest number of specimens of these snakes examined to date. Two disjunct subspecies of C. monensis are recognized: the threatened C. m. monensis, endemic to Mona Island, and the rare and endangered C. m. granti, which occurs on various islands of the Puerto Rican Bank. Mitochondrial and nuclear markers revealed unambiguous genetic differences between the taxa, and coalescent species delimitation methods indicated that these snakes likely are different evolutionary lineages, which we recognize at the species level, C. monensis and C. granti. All examined loci in C. monensis (sensu stricto) are monomorphic, which may indicate a recent bottleneck event. Each population of C. granti exclusively contains private mtDNA haplotypes, but five of the seven nuclear genes assayed are monomorphic, and nucleotide diversity is low in the two remaining markers. The faster pace of evolution of mtDNA possibly reflects the present-day isolation of populations of C. granti, whereas the slower substitution rate of nuDNA may instead mirror the relatively recent episodes of connectivity among the populations facilitated by the lower sea level during the Pleistocene. The small degree of overall genetic variation in C. granti suggests that demes of this snake could be managed as a single unit, a practice that would significantly increase their effective population size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2015.03.019 | DOI Listing |
Mol Biol Evol
January 2025
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
The study of mutational processes in somatic genomes has gained recent momentum, uncovering a wide array of endogenous and exogenous factors associated with somatic changes. However, the overall landscape of mutational processes in germline mutations across the tree of life and associated evolutionary driving forces are rather unclear. In this study, we analyzed mutational processes in single-stranded RNA (ssRNA) viruses which are known to jump between different hosts with divergent exogenous environments.
View Article and Find Full Text PDFGenetica
January 2025
School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
Gene duplications provide evolutionary potentials for generating novel functions. Chimonanthus praecox and C. salicifolius are closely related species from Calycantaceae, Magnoliids.
View Article and Find Full Text PDFHeredity (Edinb)
January 2025
Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
Genetic competition can obscure the true merit of selection candidates, potentially leading to altered genotype rankings and a divergence between expected and actual genetic gains. Despite a wealth of literature on genetic competition in plant and animal breeding, the separation of genetic values into direct genetic effects (DGE, related to a genotype's merit) and indirect genetic effects (IGE, related to the effects of a genotype's alleles on its neighbor's phenotype) in linear mixed models is often overlooked, likely due to the complexity involved. To address this, we introduce gencomp, a new R package designed to simplify the use of (spatial-) genetic competition models in crop and tree breeding routines.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL, 32703, USA. Electronic address:
Lagerstroemia excelsa is a unique plant species from China, holds a significant aesthetic and economic value, and plays a crucial role in landscape architecture and horticulture. Thus far, there is little genetic and genomic information available about this species, which limits its use in development of new cultivars. In this study, a high-quality genome map of L.
View Article and Find Full Text PDFAvian Pathol
January 2025
College of Animal Science and Technology/Veterinary Medicine, Anhui Agricultural University, Hefei, PR China.
Goose astrovirus (GoAstV) has emerged as a significant pathogen affecting the goose industry in China, with GoAstV-2 becoming the dominant genotype since 2017. This study explores the genetic and structural factors underlying the prevalence of GoAstV-2, focusing on codon usage bias, spike protein variability, and structural stability. Phylogenetic and effective population size analyses revealed that GoAstV-2 experienced rapid expansion between 2017 and 2018, followed by population stabilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!