The present study evaluated 15 isolates obtained of environmental samples capable of tolerating high Ni and V concentrations. Those coded as MNSH2-PHGII-1, MNSH2-PHGII-2 and MV-PHGII-2 showed a minimum inhibitory concentration higher than 200 ppm for Ni and V and showed removal percentages corresponding to 84, 75 and 26% for Ni and 60, 55 and 20.3% for V, respectively, in liquid medium. When spent catalyst was added at 16% (w/v) pulp density, the highest Ni and V removal corresponded to MNSH2-PHGII-1 and MNSH2-PHGII-2, which were identified as Microbacterium oxydans and Microbacterium liquefaciens respectively, Microbacterium oxydans was able to remove Ni at the extent of 45.4% and V at 30.4% while Microbacterium liquefaciens removed Ni at 51% and V at 41.4% from the spent catalyst. The isolate MV-PHGII-2 identified also as Microbacterium oxydans showed the lowest removal for Ni and V corresponding to 16% and 9.5%, respectively. This is the first report where strains of Microbacterium were tested for their abilities to remove Ni and V from spent catalyst, suggesting its potential use in the treatment of this solid industrial waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2015.994953 | DOI Listing |
Front Microbiol
May 2024
Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.
, a wild plant in southern Africa, is utilized in traditional medicine for various ailments, leading to its endangerment and listing on the Red List of South African Plants. To date, there have been no reports on bacterial endophytes from this plant, their classes of secondary metabolites, and potential medicinal properties. This study presents (i) taxonomic characterization of bacterial endophytes in leaf and root tissues using 16S rRNA, (ii) bacterial isolation, morphological, and phylogenetic characterization, (iii) bacterial growth, metabolite extraction, and LC-MS-based metabolite fingerprinting, and (iv) antimicrobial testing of bacterial crude extracts.
View Article and Find Full Text PDFEnviron Pollut
September 2024
State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, PR China.
Bioaugmentation techniques still show drawbacks in the cleanup of total petroleum hydrocarbons (TPHs) from petroleum-contaminated site soil. Herein, this study explored high-performance immobilized bacterial pellets (IBPs) embed Microbacterium oxydans with a high degrading capacity, and developed a controlled-release oxygen composite (CROC) that allows the efficient, long-term release of oxygen. Tests with four different microcosm incubations were performed to assess the effects of IBPs and CROC on the removal of TPHs from petroleum-contaminated site soil.
View Article and Find Full Text PDFISME J
January 2024
Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark.
Microorganisms
July 2023
Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea.
Appl Environ Microbiol
March 2023
College of Resources and Environment, Northeast Agricultural University, Harbin, People's Republic of China.
Global-scale estrone (E1) contamination of soil and aquatic environments results from the widespread use of animal manure as fertilizer, threatening both human health and environmental security. A detailed understanding of the degradation of E1 by microorganisms and the associated catabolic mechanism remains a key challenge for the bioremediation of E1-contaminated soil. Here, Microbacterium oxydans ML-6, isolated from estrogen-contaminated soil, was shown to efficiently degrade E1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!