Cilia in photoreceptors.

Methods Cell Biol

Department of Ophthalmology, UMASS Medical School, Worcester, MA, USA.

Published: January 2016

Retina is a neurosensory tissue lining the back of the eye and is responsible for light detection and relaying the signal to the visual cortex in the brain. Mammalian retina consists of six major types of neurons (including photoreceptors; rods and cones) and one type of glial cells arranged in distinct layers. Photoreceptors are the most abundant cell types accounting for approximately 60% of all cells in the retina. Owing to their unique structure and function as ciliated neurons and their vast majority, dysfunction and degeneration of photoreceptors is associated with several inherited blindness disorders, such as retinitis pigmentosa, cone-rod degeneration, and age-related macular degeneration. Therefore, it is imperative to examine the structure and function of photoreceptors so that better understanding of the pathogenesis of associated diseases can be obtained for designing therapeutic modalities. In this chapter, we will provide detailed methods for analyzing photoreceptor function (electroretinography), structure, and biochemical analysis of sensory cilia of photoreceptors using mammalian retina as model system. These methods are widely used to assess photoreceptor development and degeneration during disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mcb.2014.12.005DOI Listing

Publication Analysis

Top Keywords

cilia photoreceptors
8
mammalian retina
8
structure function
8
photoreceptors
5
retina
4
photoreceptors retina
4
retina neurosensory
4
neurosensory tissue
4
tissue lining
4
lining eye
4

Similar Publications

Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease.

Neurobiol Dis

December 2024

Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed.

View Article and Find Full Text PDF

A cryo-electron tomography study of ciliary rootlet organization.

Elife

December 2024

MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.

Ciliary rootlets are striated bundles of filaments that connect the base of cilia to internal cellular structures. Rootlets are critical for the sensory and motile functions of cilia. However, the mechanisms underlying these functions remain unknown, in part due to a lack of structural information of rootlet organization.

View Article and Find Full Text PDF

Photosynthetic protists, named microalgae, are key players in global primary production. The green microalga Chlamydomonas reinhardtii is a well-studied model organism. In nature, it dwells in acetate-rich paddy rice soil, which is not mimicked by standard liquid laboratory conditions.

View Article and Find Full Text PDF

GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment.

Nat Commun

November 2024

Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France.

Here we conduct a study involving 12 individuals with retinal dystrophy, neurological impairment, and skeletal abnormalities, with special focus on GPATCH11, a lesser-known G-patch domain-containing protein, regulator of RNA metabolism. To elucidate its role, we study fibroblasts from unaffected individuals and patients carrying the recurring c.328+1 G > T mutation, which specifically removes the main part of the G-patch domain while preserving the other domains.

View Article and Find Full Text PDF

Identification of a non-canonical planar cell polarity pathway triggered by light in the developing mouse retina.

Dev Cell

November 2024

Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada. Electronic address:

The coordinated spatial arrangement of organelles within a tissue plane, known as planar cell polarity (PCP), is critical for organ development and function. Gradients of morphogens and their receptors typically set-up PCP, but whether non-molecular cues, akin to phototropism in plants, also play a part remains unknown. Here, we report that basal bodies of newborn photoreceptor cells in the mouse retina are positioned centrally on the apical surface but then move laterally during the first postnatal week, generating cell-intrinsic asymmetry in the retinal plane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!