Salvia plebeia R. Br. has been used to treat a variety of inflammatory diseases and as an antioxidant in many countries, including Korea and China. In this study, we investigated the effects of S. plebeia extract (SPE) on inflammatory arthritis and the underlying mechanisms of action. We used a collagen-induced arthritis (CIA) mouse model. TNF-α-stimulated rheumatoid arthritis (RA) synovial fibroblasts were used to elucidate the underlying mechanisms of action. Oral administration of SPE improved the clinical arthritis score, footpad thickness, and histologic changes, as well as serum IgG1 and IgG2a levels. SPE administration inhibited Th1/Th2/Th17 phenotype CD4(+) T lymphocyte expansion in inguinal lymph node and expression of inflammatory mediators such as cytokines, MMP-1, and MMP-3 in the ankle joint tissue. SPE significantly suppressed the expression of cytokines and MMP-1 by down-regulating NF-κB, Akt, and mitogen-activated protein kinases in RA synovial fibroblasts. Taken together, these results indicate that SPE is therapeutically efficacious against chronic inflammatory arthritis, suggesting that SPE is a candidate for treating RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2015.01.007DOI Listing

Publication Analysis

Top Keywords

synovial fibroblasts
12
salvia plebeia
8
plebeia extract
8
inflammatory arthritis
8
underlying mechanisms
8
mechanisms action
8
cytokines mmp-1
8
arthritis
6
spe
6
inflammatory
5

Similar Publications

LAMP3-mediated epithelial-mesenchymal transition promotes the invasion and excessive proliferation of fibroblast-like synoviocytes in rheumatoid arthritis.

J Autoimmun

January 2025

Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China. Electronic address:

Objective: The aim of this study was to explore the functional role of LAMP3-mediated epithelial-mesenchymal transition (EMT) in fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) patients and to evaluate its potential as a therapeutic target.

Methodology: Changes in EMT and LAMP3 were investigated in the synovial tissue and FLSs of RA patients. In vitro experiments were performed using the EMT inhibitor C19, siRNA, and lentivirus to examine the impact of EMT and LAMP3 on RA-FLSs and the underlying mechanisms involved.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.

View Article and Find Full Text PDF

The prevalence of rheumatoid arthritis (RA) has sharply increased in recent years, posing a serious threat to human health. RA is characterized as a chronic, multisystem disease with morning stiffness and symmetric small joint pain. However, its fundamental processes are poorly understood.

View Article and Find Full Text PDF

Objective: Fibroblast-like synoviocytes (FLS) are key players in rheumatoid arthritis (RA) by resisting apoptosis via increased autophagy. Elevated synovial aquaporin 1 (AQP1) affects RA FLS behaviors, but its relationship with FLS autophagy is unclear. We aim to clarify that silencing AQP1 inhibits autophagy to exert its anti-RA effects.

View Article and Find Full Text PDF

Objective: The inflammatory responses from synovial fibroblasts and macrophages and the mitochondrial dysfunction in chondrocytes lead to oxidative stress, disrupt extracellular matrix (ECM) homeostasis, and accelerate the deterioration process of articular cartilage in osteoarthritis (OA). In recent years, it has been proposed that mesenchymal stromal cells (MSC) transfer their functional mitochondria to damaged cells in response to cellular stress, becoming one of the mechanisms underpinning their therapeutic effects. Therefore, we hypothesize that a novel cell-free treatment for OA could involve direct mitochondria transplantation, restoring both cellular and mitochondrial homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!