Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study the cytotoxicities of two species of Tanacetum were evaluated against human tumor cells. Tanacetum oshanahanii extract was more cytotoxic than Tanacetum ptarmiciflorum. Analyses of both extracts of Tanacetum by ultrahigh performance liquid chromatography-tandem mass spectrometry revealed that T. oshanahanii extract contains the eudesmanolide tanapsin, while T. ptarmiciflorum lacks this sesquiterpene lactone. Tanapsin was cytotoxic against leukemia and melanoma cells, including cells that overexpress Bcl-2 and Bcl-xL, with IC50 values of approximately 10 µM, but not against quiescent or proliferating human peripheral blood mononuclear cells. Treatment of cells with tanapsin induced apoptosis. This was prevented by the non-specific caspase inhibitor z-VAD-fmk, and reduced by the selective caspase-3/7 inhibitor z-DEVD-fmk. Tanapsin acetate was also cytotoxic against leukemia and melanoma cells and a potent apoptotic inducer. Tanapsin-induced cell death was found to be associated with (i) the loss of inner mitochondrial membrane potential (ΔΨm) and release of mitochondrial cytochrome c, (ii) the activation of multiple caspases and the mitogen-activated protein kinase pathway, and (iii) an increase in reactive oxygen species generation. Generation of reactive oxygen species in response to tanapsin seems to play a crucial role in the cell death process since the antioxidant N-acetyl-l-cysteine blocked both ROS generation and cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2015.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!