Epsins belong to the family of highly conserved clathrin-associated sorting proteins that are indispensable for clathrin-mediated endocytosis, but their precise functions remain unclear. We have developed an assay system of budded supported membrane tubes displaying planar and highly curved membrane surfaces to analyze intrinsic membrane curvature preference shown by clathrin-associated sorting proteins. Using real-time fluorescence microscopy, we find that epsin preferentially partitions to and assembles clathrin on highly curved membrane surfaces. Sorting of epsin to regions of high curvature strictly depends on binding to phosphatidylinositol 4,5-bisphosphate. Fluorescently labeled clathrins rapidly assemble as foci, which in turn cluster epsin, while maintaining tube integrity. Clathrin foci grow in intensity with a typical time constant of ∼75 s, similar to the time scales for coated pit formation seen in cells. Epsin therefore effectively senses membrane curvature to spatially control clathrin assembly. Our results highlight the potential role of membrane curvature in orchestrating the myriad molecular interactions necessary for the success of clathrin-mediated membrane budding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505496PMC
http://dx.doi.org/10.1074/jbc.M115.653394DOI Listing

Publication Analysis

Top Keywords

membrane curvature
16
clathrin assembly
8
membrane
8
clathrin-associated sorting
8
sorting proteins
8
highly curved
8
curved membrane
8
membrane surfaces
8
curvature
5
spatial control
4

Similar Publications

Dissecting the biophysical mechanisms of oleate hydratase association with membranes.

Front Mol Biosci

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.

View Article and Find Full Text PDF

Background And Objective: It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood.

Methods: Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

On the Gaussian modulus of lipid membranes.

Biomech Model Mechanobiol

January 2025

Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX, 77204, USA.

The Gaussian modulus is a crucial property that influences topological transformations in lipid membranes. However, unlike the bending modulus, estimating the Gaussian modulus has been particularly challenging due to the constraints imposed by the Gauss-Bonnet theorem. Despite this, various theoretical, computational, and experimental approaches have been developed to estimate the Gaussian modulus, though they are often complex, and analytical estimates remain rare.

View Article and Find Full Text PDF

The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!