Rayleigh scattering generates intensity noise close to an optical carrier that propagates in a single-mode optical fiber. This noise degrades the performance of optoelectronic oscillators and RF-photonic links. When using a broad linewidth laser, we previously found that the intensity noise power scales linearly with optical power and fiber length, which is consistent with guided entropy mode Rayleigh scattering (GEMRS), a third order nonlinear scattering process, in the spontaneous limit. In this work, we show that this behavior changes significantly with the use of a narrow linewidth laser. Using a narrow linewidth laser, we measured the bandwidth of the intensity noise plateau to be 10 kHz. We found that the scattered noise power scales superlinearly with fiber length up to lengths of 10 km in the frequency range of 500 Hz to 10 kHz, while it scales linearly in the frequency range of 10 Hz to 100 Hz. These results suggest that the Rayleigh-scattering-induced intensity noise cannot be explained by third-order nonlinear scattering in the spontaneous limit, as previously hypothesized.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.006400DOI Listing

Publication Analysis

Top Keywords

intensity noise
20
linewidth laser
12
rayleigh scattering
8
noise power
8
power scales
8
scales linearly
8
fiber length
8
nonlinear scattering
8
spontaneous limit
8
narrow linewidth
8

Similar Publications

Mesoporous carbon nanospheres-assisted amplified electrochemiluminescence for L-cysteine detection.

Anal Biochem

January 2025

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China. Electronic address:

Luminol-loaded mesoporous carbon nanospheres (MCs@LU) were utilized to develop a highly sensitive electrochemiluminescence (ECL) sensor for the detection of L-cysteine (L-Cys). L-Cys acted as the coreactant of luminol, and the pore confinement effect of mesoporous carbons (MCs) resulted in a robust ECL signal. Upon optimization, a linear correlation between the ECL intensity and L-Cys concentration was observed over the range of 5.

View Article and Find Full Text PDF
Article Synopsis
  • Many experimental setups in quantum science rely on laser fields for controlling states, but this control can suffer from issues related to optical phase noise.
  • Researchers introduced an optical feedforward technique to minimize laser phase noise during the stimulated Raman adiabatic passage for transferring ultracold RbCs molecules.
  • After conducting over 100 transfers on individual molecules, they achieved a notable transfer efficiency of 98.7(1)%, which is primarily constrained by the intensity of the lasers used.
View Article and Find Full Text PDF

Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.

View Article and Find Full Text PDF

Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Neurobehavioral Systems, Inc, Berkeley, CA, USA.

Background: The administration of cognitive tests in patients' homes facilitates access by underserved communities and increases testing capacity and efficiency. However, the validity of at-home computerized cognitive tests is often questioned because of limitations in examiner monitoring, distractions, environmental noise, and potential cheating. Here, we compare performance of the computerized and proctored California Cognitive Assessment Battery (CCAB) when administered at-home or in the laboratory using otherwise identical procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!