Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, we introduced the basic concepts behind a new polarimeter device based on conical refraction (CR), which presents several appealing features compared to standard polarimeters. To name some of them, CR polarimeters retrieve the polarization state of an input light beam with a snapshot measurement, allow for substantially enhancing the data redundancy without increasing the measuring time, and avoid instrumental errors owing to rotating elements or phase-to-voltage calibration typical from dynamic devices. In this article, we present a comprehensive study of the optimization, robustness and parameters tolerance of CR based polarimeters. In addition, a particular CR based polarimetric architecture is experimentally implemented, and some concerns and recommendations are provided. Finally, the implemented polarimeter is experimentally tested by measuring different states of polarization, including fully and partially polarized light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.005636 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!