Demagnetization cooling utilizes dipolar relaxations that couple the internal degree of freedom (spin) to the external (angular momentum) in order to cool an atomic cloud efficiently. Optical pumping into a dark state constantly recycles the atoms that were thermally excited to higher spin states. The net energy taken away by a single photon is very favorable since the lost energy per atom is the Zeeman energy rather than the recoil energy. As the density of the atomic sample rises the presence of the photons leads to limiting processes. In our previous publication [Volchkov et al. (2014)] we have shown that light-assisted collisions are such an important limiting process. In this paper we suppress light-assisted collisions by detuning the optical pumping light such that the Condon point coincides with the first node of the ground state wave function of two colliding atoms. This leads to an increased cooling efficiency χ ≥ 17 as well as to increased maximum densities of n ≈ 1 · 10(20) m(-3). However, due to the high number of involved molecular states the net suppression is not strong enough to reach quantum degeneracy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.005596DOI Listing

Publication Analysis

Top Keywords

light-assisted collisions
12
demagnetization cooling
8
optical pumping
8
states net
8
high efficiency
4
efficiency demagnetization
4
cooling suppression
4
suppression light-assisted
4
collisions demagnetization
4
cooling utilizes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!