We report for the first time the conversion of incoherent infrared light around 4.4µm into a near-infrared signal at 810nm in erbium-doped GaGeSbS fibers and bulk glass samples. This energy conversion is made possible by pumping erbium doped chalcogenide samples at 982 nm and simultaneously exciting them with a 4.4µm infrared signal. This result paves the way for the development of an "all-optical" gas sensor able to detect various gas traces using a remote detection based on commercial silica fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.004163DOI Listing

Publication Analysis

Top Keywords

doped chalcogenide
8
wavelength conversion
4
conversion er3+
4
er3+ doped
4
chalcogenide fibers
4
fibers optical
4
optical gas
4
gas sensors
4
sensors report
4
report time
4

Similar Publications

Large Improvements in the Thermoelectric Properties of SnSe by Fast Cooling.

Materials (Basel)

January 2025

Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or BiTe. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering.

View Article and Find Full Text PDF

Replacing the sluggish anodic water oxidation reaction with the glucose oxidation reaction (GOR) offers an energy-saving strategy to obtain value-added products during the hydrogen production process. However, rational design of the GOR electrocatalyst with an explicit structure-property relationship remains a challenge. In this study, by using cobalt chalcogenides as model catalysts, we performed an in-depth study of the GOR catalytic mechanism of CoS and CoSe nanosheets.

View Article and Find Full Text PDF

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

Silver chalcogenides exhibit exceptional transport properties but face structural instability at high temperatures, limiting their practical applications. Using AgTe as a model, it is confirm that silver whisker growth above the phase transition renders AgTe unsuitable for thermoelectric applications. Here, the whisker growth mechanism is investigated and propose an inhibition strategy, overcoming a major obstacle in using silver chalcogenides.

View Article and Find Full Text PDF

Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!