Four structures of oxoindolyl α-hydroxy-β-amino acid derivatives, namely, methyl 2-{3-[(tert-butoxycarbonyl)amino]-1-methyl-2-oxoindolin-3-yl}-2-methoxy-2-phenylacetate, C24H28N2O6, (I), methyl 2-{3-[(tert-butoxycarbonyl)amino]-1-methyl-2-oxoindolin-3-yl}-2-ethoxy-2-phenylacetate, C25H30N2O6, (II), methyl 2-{3-[(tert-butoxycarbonyl)amino]-1-methyl-2-oxoindolin-3-yl}-2-[(4-methoxybenzyl)oxy]-2-phenylacetate, C31H34N2O7, (III), and methyl 2-[(anthracen-9-yl)methoxy]-2-{3-[(tert-butoxycarbonyl)amino]-1-methyl-2-oxoindolin-3-yl}-2-phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α-diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N-H···O hydrogen bonds with the ester and ether O atoms in all four structures. The ether-linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N-H···O hydrogen-bond interactions. In contrast, the remaining three structures are sustained by C-H···O hydrogen-bond interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229615005604DOI Listing

Publication Analysis

Top Keywords

acid derivatives
8
amide group
8
hydrogen-bond interactions
8
oxoindole-linked α-alkoxy-β-amino
4
α-alkoxy-β-amino acid
4
structures
4
derivatives structures
4
structures oxoindolyl
4
oxoindolyl α-hydroxy-β-amino
4
α-hydroxy-β-amino acid
4

Similar Publications

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

12/15-Lipoxygenase-Derived Electrophilic Lipid Modifications in Phagocytic Macrophages.

ACS Chem Biol

January 2025

Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-0011, Japan.

Macrophages remove apoptotic cells via phagocytosis, also known as efferocytosis, during inflammation to maintain tissue homeostasis. This process is accompanied by various metabolic changes in macrophages including the production of lipid metabolites by fatty acid oxygenases. Among these, highly reactive metabolites, called lipid-derived electrophiles (LDEs), modify cysteines and other nucleophilic amino acids in intracellular proteins.

View Article and Find Full Text PDF

Surface coating nanoarchitectonics for optimizing cytocompatibility and antimicrobial activity: The impact of hyaluronic acid positioning as the outermost layer.

Int J Biol Macromol

January 2025

Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, USA. Electronic address:

Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PS) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PS, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA) PEM (2.

View Article and Find Full Text PDF

Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this exploratory study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive-Behavioral Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways.

View Article and Find Full Text PDF

Photochemical regulation of microcystin synthesis and release in cyanobacteria Microcystis aeruginosa by triplet state dissolved organic matter.

Sci Total Environ

January 2025

College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:

The increasing frequency of cyanobacterial blooms, particularly those induced by Microcystis aeruginosa (M. aeruginosa), poses severe economic, ecological and health challenges due to the production of microcystins (MCs). Environmental parameters such as light and nutrient availability influence MCs production, while the role of dissolved organic matter (DOM) photochemical processes in regulating these remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!