A quantitative phase measuring technique is presented that estimates the object phase from a series of phase shifted interferograms that are obtained in a common-path configuration with unknown phase shifts. The derived random phase shifting algorithm for common-path interferometers is based on the Generalized Phase Contrast theory [pl. Opt.40(2), 268 (2001)10.1063/1.1404846], which accounts for the particular image formation and includes effects that are not present in two-beam interferometry. It is shown experimentally that this technique can be used within common-path configurations employing nonlinear liquid crystal materials as self-induced phase filters for quantitative phase imaging without the need of phase shift calibrations. The advantages of such liquid crystal elements compared to spatial light modulator based solutions are given by the cost-effectiveness, self-alignment, and the generation of diminutive dimensions of the phase filter size, giving unique performance advantages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.003327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!