High-power narrow-linewidth photonic bandgap fiber amplifier was demonstrated. In order to suppress stimulated Brillouin scattering, the seed linewidth was broadened by applying a random phase noise with an electro-optical modulator. A factor of 15 in terms of Brillouin gain suppression can be theoretically expected. An 87 W linearly-polarized (11 dB PER) and narrow-linewidth (780 MHz FWHM) output was obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.003134DOI Listing

Publication Analysis

Top Keywords

photonic bandgap
8
bandgap fiber
8
fiber amplifier
8
narrow-linewidth linearly-polarized
4
linearly-polarized 1178
4
1178 photonic
4
amplifier high-power
4
high-power narrow-linewidth
4
narrow-linewidth photonic
4
amplifier demonstrated
4

Similar Publications

The tunable electronic band structure of a AlP/CsBiICl van der Waals heterostructure induced by an electric field: a first-principles study.

Phys Chem Chem Phys

January 2025

Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.

Constructing van der Waals heterostructures (vdWHs) has emerged as an attractive strategy to combine and enhance the optoelectronic properties of stacked materials. Herein, by means of first-principles calculations, we investigate the geometric and electronic structures of the AlP/CsBiICl vdWH as well as its tunable band structure an external electric field. The AlP/CsBiICl vdWH is structurally and thermodynamically stable due to the low binding energy and the small energy fluctuation at room temperature.

View Article and Find Full Text PDF

Two-dimensional (2D) PdSe atomic crystals hold great potential for optoelectronic applications due to their bipolar electrical characteristics, tunable bandgap, high electron mobility, and exceptional air stability. Nevertheless, the scalable synthesis of large-area, high-quality 2D PdSe crystals using chemical vapor deposition (CVD) remains a significant challenge. Here, we present a self-limiting liquid-phase edge-epitaxy (SLE) low-temperature growth method to achieve high-quality, centimeter-sized PdSe films with single-crystal domain areas exceeding 30 μm.

View Article and Find Full Text PDF

All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites.

Nat Mater

January 2025

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.

Monolithic all-perovskite tandem solar cells present a promising approach for exceeding the efficiency limit of single-junction solar cells. However, the substantial open-circuit voltage loss in the wide-bandgap perovskite subcell hinders further improvements in power-conversion efficiency. Here we develop wide-bandgap perovskite films with improved (100) crystal orientation that suppress non-radiative recombination.

View Article and Find Full Text PDF

On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features.

Adv Sci (Weinh)

January 2025

College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.

The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.

View Article and Find Full Text PDF

Micro-corrugated chiral nematic cellulose nanocrystal films integrated with ionic conductive hydrogels leads to flexible materials for multidirectional strain sensing applications.

Int J Biol Macromol

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:

Multidirectional strain sensors are of technological importance for wearable devices and soft robots. Here, we report that flexible materials capable of multidirectional anisotropic strain sensing can be constructed leveraging diffusion-induced infiltration of monomers and in situ polymerization of metal ion-containing double network hydrogels in and on the surface of micro-corrugated chiral nematic cellulose nanocrystal/glucose films. Integrating the micro-corrugated cellulose nanocrystal/glucose chiral nematic films with ionic conductive hydrogels of PAA-co-AAm/sodium alginate/Al endows the materials with multidirectional mechanoelectrical resistivity and mechanochromism anisotropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!