A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The evolutionary origination and diversification of a dimorphic gene regulatory network through parallel innovations in cis and trans. | LitMetric

The evolutionary origination and diversification of a dimorphic gene regulatory network through parallel innovations in cis and trans.

PLoS Genet

Department of Biology, University of Dayton, Dayton, Ohio, United States of America; Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America.

Published: April 2015

The origination and diversification of morphological characteristics represents a key problem in understanding the evolution of development. Morphological traits result from gene regulatory networks (GRNs) that form a web of transcription factors, which regulate multiple cis-regulatory element (CRE) sequences to control the coordinated expression of differentiation genes. The formation and modification of GRNs must ultimately be understood at the level of individual regulatory linkages (i.e., transcription factor binding sites within CREs) that constitute the network. Here, we investigate how elements within a network originated and diversified to generate a broad range of abdominal pigmentation phenotypes among Sophophora fruit flies. Our data indicates that the coordinated expression of two melanin synthesis enzymes, Yellow and Tan, recently evolved through novel CRE activities that respond to the spatial patterning inputs of Hox proteins and the sex-specific input of Bric-à-brac transcription factors. Once established, it seems that these newly evolved activities were repeatedly modified by evolutionary changes in the network's trans-regulators to generate large-scale changes in pigment pattern. By elucidating how yellow and tan are connected to the web of abdominal trans-regulators, we discovered that the yellow and tan abdominal CREs are composed of distinct regulatory inputs that exhibit contrasting responses to the same Hox proteins and Hox cofactors. These results provide an example in which CRE origination underlies a recently evolved novel trait, and highlights how coordinated expression patterns can evolve in parallel through the generation of unique regulatory linkages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383587PMC
http://dx.doi.org/10.1371/journal.pgen.1005136DOI Listing

Publication Analysis

Top Keywords

coordinated expression
12
yellow tan
12
origination diversification
8
gene regulatory
8
transcription factors
8
regulatory linkages
8
evolved novel
8
hox proteins
8
regulatory
5
evolutionary origination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!