Lasing properties have been investigated for Yb(3+) doped glasses with similar emission cross sections (σ(emi)) and lifetime while possessing different Stark levels. Narrow Stark splitting of Yb(3+)-phosphate glass is responsible for severe heat generation, narrow emission band and much smaller σ(emi) at lasing wavelength, making Yb(3+)-phosphate glass unsuccessful to achieve laser output, whereas 1.166W cw laser was obtained in Yb(3+)-fluorophosphate (FP) glass with broader Stark splitting. Analysis on laser system levels reveals that under room temperature, Yb(3+) laser is quasi-3.13-level in phosphate glass and quasi-3.36-level in FP glass. These demonstrations suggest that unless the Stark splitting is enlarged, conventional Yb(3+)-phosphate glass is not a good gain medium for bulk Yb(3+)-laser.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.001505DOI Listing

Publication Analysis

Top Keywords

stark splitting
16
yb3+-phosphate glass
12
glass
6
influence stark
4
splitting
4
splitting levels
4
levels lasing
4
lasing performance
4
performance yb3+
4
yb3+ phosphate
4

Similar Publications

The rotational spectrum of 2'-hydroxyacetophenone has been recorded and assigned for the first time using a Stark-modulated free-jet absorption millimeter-wave (FJ-AMMW) spectrometer in the 59.6-74.5 GHz frequency range.

View Article and Find Full Text PDF

Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy.

Nano Lett

January 2025

Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.

Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules.

View Article and Find Full Text PDF

The fluorescence intensity ratio (FIR) approach, which relies on thermally coupled levels (TCLs), is significantly important for optical thermometry at room temperature and above, but was found to be impractical for low temperature sensing due to limited population density (thermal) or lack of spectrum at extremely low temperatures. Herein, we report a wide temperature range (12-673 K) sensing capability of the PbZrTiO:Er/Yb (C1:PZT) phosphor utilising the bandwidth of Stark sublevel split near-infrared (NIR) emission bands as one sensing parameter and FIR as another. Motivated by our previous studies on upconversion (UC) and the promising thermometry performance of the C1:PZT phosphor for real time nanothermometer monitoring (using visible TCLs), this work extends to the same thermometry application using UC-NIR emission as TCLs.

View Article and Find Full Text PDF

Purpose: The Clinical Genome Resource (ClinGen) Gene Curation Expert Panels (GCEPs) have historically focused on specific organ systems or phenotypes; thus, the ClinGen Syndromic Disorders GCEP (SD-GCEP) was formed to address an unmet need.

Methods: The SD-GCEP applied ClinGen's framework to evaluate the clinical validity of genes associated with rare syndromic disorders. 111 Gene-Disease Relationships (GDRs) associated with 100 genes spanning the clinical spectrum of syndromic disorders were curated.

View Article and Find Full Text PDF

Drastic variation in mitochondrial genome organization between two congeneric species of bird lice (Philopteridae: Ibidoecus).

BMC Genomics

November 2024

Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4556, Australia.

The over 4,100 species of bird lice are classified into 214 genera in the parvorders Amblycera and Ischnocera. Congeneric species of bird lice usually share much similarity in morphology and in mitochondrial (mt) genome organization. Two recent studies, however, reported substantial intra-genus variation in mt genome organization in bird lice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!