A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Orthogonal and parallel lattice plasmon resonance in core-shell SiO(2)/Au nanocylinder arrays. | LitMetric

Height induced coupling behavior between the plasmonic modes and diffraction orders were studied in the core-shell SiO(2)/Au nanocylinder arrays (NCAs) using finite difference time domain (FDTD) simulations. New lattice plasmon modes (LPMs) are observed in the structures with high aspect ratio. Specifically, parallel coupling between the plasmonic modes and diffraction orders is obtained here, which shows different coupling behavior from orthogonal LPMs. Electromagnetic (EM) field distributions indicate that horizontal propagation of the magnetic or electric field component is responsible for the generation of these orthogonal and parallel LPMs, respectively. Radiative loss could be effectively suppressed when the height increases. This is important for the applications of fluorescence enhancement and nano laser. Further studies confirm that the LPMs associated with the superstrate diffraction orders could be well maintained even when the Au coating is imperfect. The interference from the substrate associated LPMs could be eliminated by cutting off the corresponding diffraction waves by inducing a Si(3)N(4) substrate. This study of coupling behavior in the core-shell NCAs enables a novel route to design and optimize the LPMs for applications of bio-sensing and nano laser.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.000130DOI Listing

Publication Analysis

Top Keywords

coupling behavior
12
diffraction orders
12
orthogonal parallel
8
lattice plasmon
8
core-shell sio2/au
8
sio2/au nanocylinder
8
nanocylinder arrays
8
plasmonic modes
8
modes diffraction
8
nano laser
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!