Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Height induced coupling behavior between the plasmonic modes and diffraction orders were studied in the core-shell SiO(2)/Au nanocylinder arrays (NCAs) using finite difference time domain (FDTD) simulations. New lattice plasmon modes (LPMs) are observed in the structures with high aspect ratio. Specifically, parallel coupling between the plasmonic modes and diffraction orders is obtained here, which shows different coupling behavior from orthogonal LPMs. Electromagnetic (EM) field distributions indicate that horizontal propagation of the magnetic or electric field component is responsible for the generation of these orthogonal and parallel LPMs, respectively. Radiative loss could be effectively suppressed when the height increases. This is important for the applications of fluorescence enhancement and nano laser. Further studies confirm that the LPMs associated with the superstrate diffraction orders could be well maintained even when the Au coating is imperfect. The interference from the substrate associated LPMs could be eliminated by cutting off the corresponding diffraction waves by inducing a Si(3)N(4) substrate. This study of coupling behavior in the core-shell NCAs enables a novel route to design and optimize the LPMs for applications of bio-sensing and nano laser.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.000130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!