Antipyretic and anti-inflammatory activities of Thais luteostoma extracts and underlying mechanisms.

Chin J Nat Med

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:

Published: March 2015

Thais luteostoma has been utilized as a crude drug whose shell and soft tissue have been widely used for the treatment of heat syndrome in China for thousands of years. The present study was designed to investigate the antipyretic and anti-inflammatory activities of T. luteostoma. T. luteostoma was divided into shell (TLSH) and soft tissue (TLST) samples in the present study. The rat model of yeast-induced fever was used to investigate their antipyretic effects; and the rat model of hind paw edema induced by carrageenan was utilized to study their anti-inflammatory activities, and at the same time, the concentration variations of the central neurotransmitter [prostaglandin E2 (PGE2) and cyclic adenosine monophosphate (cAMP)], inflammatory mediators [tumor necrosis factor (TNFα), interleukin-1β (IL-1), interleukin-2 (IL-2) and interleukin-6 (IL-6)] and ion (Na(+) and Ca(2+)) were also tested. The results showed that TLSH and TLST extracts significantly inhibited yeast-induced pyrexia in rats (P < 0.05), and exhibited more lasting effects as compared to aspirin, and TLSH had the better antipyretic activity than TLST, and that TLSH and TLST could significantly prevent against carrageenan induced paw edema in rats (P < 0.05); and markedly reduced levels of PGE2, cAMP, TNFα, IL-1β, IL-2, IL-6, and Na(+)/Ca(2+). In fever model, TLST could significantly reduce the levels of PGE2 (P < 0.01) in rats' homogenate and TNFα (P < 0.05), IL-1β (P < 0.01) in the plasma than TLSH, whereas TLSH could reduce the content of IL-2 (P < 0.01) and IL-6 (P < 0.01) in plasma and increase the content of Ca(2+) (P < 0.01) in plasma and homogenate more significantly than TLST. In conclusion, T. luteostoma extract has antipyretic and anti-inflammatory activities, which may be mediated through the suppression of production of PGE2, cAMP, Na(+)/Ca(2+), TNFα, IL-1β, IL-2, and IL-6.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(15)30004-2DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory activities
16
antipyretic anti-inflammatory
12
001 plasma
12
thais luteostoma
8
soft tissue
8
investigate antipyretic
8
rat model
8
paw edema
8
tlsh tlst
8
rats 005
8

Similar Publications

Discovery of Metabolic Reprogramming 2-Quinolones as Effective Antimicrobials for MRSA-Infected Wound Therapy.

J Med Chem

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

To date, the abuse of antibiotics and a gradual decline in novel antibiotic discovery enlarge the threat of drug-resistant bacterial infections, especially methicillin-resistant (MRSA). Herein, inspired by the unique structures and antibacterial activities of 2-quinolones, a class of novel 2-quinolones with substituted pyridines was synthesized. Notably, compound , the derivative with a methylpyridine fragment, showed potent antibacterial and antibiofilm activities, especially for MRSA strains (MIC = 0.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.

View Article and Find Full Text PDF

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!