Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB); may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent "IRP1-HIF2α axis"; DCYTB and ascorbate in relation to iron metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425144 | PMC |
http://dx.doi.org/10.3390/nu7042274 | DOI Listing |
Chembiochem
January 2025
Renmin University of China, Chemistry, No.59 Zhongguangcun Street, Haidian District, 100872, Beijing, CHINA.
BTG13, a non-heme iron-dependent enzyme with a distinctive coordination environment of four histidines and a carboxylated lysine, has been found to catalyze the cleavage of the C4a-C10 bond in anthraquinone. Contrary to typical dioxygenase mechanisms, our quantum mechanical/molecular mechanical (QM/MM) calculations reveal that BTG13 functions more like a monooxygenase. It selectively inserts an oxygen atom into the C10-C4a bond, creating a lactone species that subsequently hydrolyzes, leading to the formation of a ring-opened product.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria.
Terminal olefins are important platform chemicals, drop-in compatible hydrocarbons and also play an important role as biocontrol agents of plant pathogens. Currently, 1-alkenes are derived from petroleum, although microbial biosynthetic routes are known. Jeotgalicoccus sp.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.
Nitrification by heterotrophic microorganisms is an important part of the nitrogen cycle in the environment. The enzyme responsible for the core function of heterotrophic nitrification is pyruvic oxime dioxygenase (POD). POD is a non-heme, Fe(II)-dependent enzyme that catalyzes the dioxygenation of pyruvic oxime to produce pyruvate and nitrite.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin, China.
Eur J Nutr
December 2024
Humanify Centro de Bienestar Integral, Instituto de Investigación Nutricional - IIN, Lima, Peru.
Background And Purpose: Bioavailability studies and observational evidence suggest that heme iron (HI) may have greater impact on iron status indicators compared with non-heme iron (NHI). This systematic review and meta-analysis aimed to review the current evidence on the effect of the administration of HI compared with NHI for improving iron status in non-hospitalized population groups.
Methods: We searched Pubmed, CENTRAL, Scopus, Web of Science, and LILACS from inception to July 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!