Molecular dynamics (MD) modeling is used to study the fracture toughness and crack propagation path of monolayer molybdenum disulfide (MoS(2)) sheets under mixed modes I and II loading. Sheets with both initial armchair and zigzag cracks are studied. The MD simulations predict that crack edge chirality, tip configuration and the loading phase angle influence the fracture toughness and crack propagation path of monolayer MoS(2) sheets. Furthermore, under all loading conditions, both armchair and zigzag cracks prefer to extend along a zigzag path, which is in agreement with the crack propagation path in graphene. A remarkable out-of-plane buckling can occur during mixed mode loading which can lead to the development of buckling cracks in addition to the propagation of the initial cracks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/26/17/175703 | DOI Listing |
Polymers (Basel)
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia.
In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Airworthiness Division, Air Force Institute of Technology, 01-494 Warsaw, Poland.
The range of sensor technologies for structural health monitoring (SHM) systems is expanding as the need for ongoing structural monitoring increases. In such a case, damage to the monitored structure elements is detected using an integrated network of sensors operating in real-time or periodically in frequent time stamps. This paper briefly introduces a new type of sensor, called a Customized Crack Propagation Sensor (CCPS), which is an alternative for crack gauges, but with enhanced functional features and customizability.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Explosion Science and Protection Technology, Beijing Institute of Technology, Beijing 100081, China.
Hydrogen embrittlement is a critical issue for zirconium alloys, which receives long-term attention in their applications. The formation of brittle hydrides facilitates crack initiation and propagation, thereby significantly reducing the material's ductility. This study investigates the tensile properties and hydride morphology of a novel zirconium alloy under different hydrogen-charging current densities ranging from 0 to 300 mA/cm, aiming to clarify the influence of hydrides on the fracture behavior of the alloy.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China.
The global asphalt production growth rate exceeded 10% in the past decade, and over 90% of the world's road surfaces are generated from asphalt materials. Therefore, the issue of asphalt aging has been widely researched. In this study, the aging of asphalt thin films under various natural conditions was studied to prevent the distortion of indoor simulated aging and to prevent the extraction of asphalt samples from road surfaces from impacting the aged asphalt.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.
This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!