https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=25834648&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 258346482015040220200930
1871-4080922015AprCognitive neurodynamicsCogn NeurodynNoise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons.179200179-20010.1007/s11571-014-9314-0We are interested in noise-induced firings of subthreshold neurons which may be used for encoding environmental stimuli. Noise-induced population synchronization was previously studied only for the case of global coupling, unlike the case of subthreshold spiking neurons. Hence, we investigate the effect of complex network architecture on noise-induced synchronization in an inhibitory population of subthreshold bursting Hindmarsh-Rose neurons. For modeling complex synaptic connectivity, we consider the Watts-Strogatz small-world network which interpolates between regular lattice and random network via rewiring, and investigate the effect of small-world connectivity on emergence of noise-induced population synchronization. Thus, noise-induced burst synchronization (synchrony on the slow bursting time scale) and spike synchronization (synchrony on the fast spike time scale) are found to appear in a synchronized region of the [Formula: see text]-[Formula: see text] plane ([Formula: see text]: synaptic inhibition strength and [Formula: see text]: noise intensity). As the rewiring probability [Formula: see text] is decreased from 1 (random network) to 0 (regular lattice), the region of spike synchronization shrinks rapidly in the [Formula: see text]-[Formula: see text] plane, while the region of the burst synchronization decreases slowly. We separate the slow bursting and the fast spiking time scales via frequency filtering, and characterize the noise-induced burst and spike synchronizations by employing realistic order parameters and statistical-mechanical measures introduced in our recent work. Thus, the bursting and spiking thresholds for the burst and spike synchronization transitions are determined in terms of the bursting and spiking order parameters, respectively. Furthermore, we also measure the degrees of burst and spike synchronizations in terms of the statistical-mechanical bursting and spiking measures, respectively.KimSang-YoonSYComputational Neuroscience Lab., Department of Science Education, Daegu National University of Education, Daegu, 705-115 Korea.LimWoochangWComputational Neuroscience Lab., Department of Science Education, Daegu National University of Education, Daegu, 705-115 Korea.engJournal Article20141129
NetherlandsCogn Neurodyn1013069071871-4080Noise-induced burst and spike synchronizationsSmall-world networksSubthreshold bursting neurons
201452820149142014107201543602015446020154461201641ppublish25834648PMC437856610.1007/s11571-014-9314-09314Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007;3:e17. doi: 10.1371/journal.pcbi.0030017.10.1371/journal.pcbi.0030017PMC179432417274684Bassett DS, Bullmore E. Small-world brain networks. The Neuroscientist. 2006;12:512–523. doi: 10.1177/1073858406293182.10.1177/107385840629318217079517Batista CAS, Batista AM, de Pontes JAC, Viana RL, Lopes SR. Chaotic phase synchronization in scale-free networks of bursting neurons. Phys Rev E. 2007;76:016218. doi: 10.1103/PhysRevE.76.016218.10.1103/PhysRevE.76.01621817677554Batista CAS, Lameu EL, Batista AM, Lopes SR, Pereira T, Zamora-Lopez G, Kurths J, Viana RL. Phase synchronization of bursting neurons in clustered small-world networks. Phys Rev E. 2012;86:016211. doi: 10.1103/PhysRevE.86.016211.10.1103/PhysRevE.86.01621123005511Börgers C, Kopell N. Synchronization in network of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 2003;15:509–538. doi: 10.1162/089976603321192059.10.1162/08997660332119205912620157Börgers C, Kopell N. Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Comput. 2005;17:557–608. doi: 10.1162/0899766053019908.10.1162/089976605301990815802007Braun HA, Wissing H, Schäfer K, Hirsh MC. Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature. 1994;367:270–273. doi: 10.1038/367270a0.10.1038/367270a011407413Brunel N, Hakim V. Sparsely synchronized neuronal oscillations. Chaos. 2008;18:015113. doi: 10.1063/1.2779858.10.1063/1.277985818377094Bullmore E, Sporns O. Complex brain networks: graph-theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–198. doi: 10.1038/nrn2575.10.1038/nrn257519190637Buzsáki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–225. doi: 10.1146/annurev-neuro-062111-150444.10.1146/annurev-neuro-062111-150444PMC404954122443509Buzsáki G, Geisler C, Henze DA, Wang XJ. Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 2004;27:186–193. doi: 10.1016/j.tins.2004.02.007.10.1016/j.tins.2004.02.00715046877Chklovskii DB, Mel BW, Svoboda K. Cortical rewiring and information storage. Nature. 2004;431:782–788. doi: 10.1038/nature03012.10.1038/nature0301215483599Coombes S, Bressloff PC, editors. Bursting: the genesis of rhythm in the nervous system. Singapore: World Scientific; 2005.Dhamala M, Jirsa V, Ding M. Transitions to synchrony in coupled bursting neurons. Phys Rev Lett. 2004;92:028101. doi: 10.1103/PhysRevLett.92.028101.10.1103/PhysRevLett.92.02810114753970Duan L, Fan D, Lu Q. Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Cogn Neurodyn. 2013;7:341–349. doi: 10.1007/s11571-012-9237-6.10.1007/s11571-012-9237-6PMC371320624427210Erdös P, Rényi A. On random graph. Publicationes Mathematicae Debrecen. 1959;6:290–297.Golomb D, Rinzel J. Clustering in globally coupled inhibitory neurons. Physica D. 1994;72:259–282. doi: 10.1016/0167-2789(94)90214-3.10.1016/0167-2789(94)90214-3Guare J. Six degrees of separation: a play. New York: Random House; 1990.Guo D, Wang Q, Perc M. Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys Rev E. 2012;85:061905. doi: 10.1103/PhysRevE.85.061905.10.1103/PhysRevE.85.06190523005125Hansel D, Mato G, Meunier C. Synchrony in excitatory neural networks. Neural Comput. 1995;7:307–337. doi: 10.1162/neco.1995.7.2.307.10.1162/neco.1995.7.2.3078974733Hindmarsh JL, Rose RM. A model of the nerve impulse using two first-order differential equations. Nature. 1982;296:162–164. doi: 10.1038/296162a0.10.1038/296162a07063018Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond Ser B. 1984;221:87–102. doi: 10.1098/rspb.1984.0024.10.1098/rspb.1984.00246144106Hong DG, Kim SY, Lim W. Effect of sparse random connectivity on the stochastic spiking coherence of inhibitory subthreshold neurons. J Korean Phys Soc. 2011;59:2840–2846. doi: 10.3938/jkps.59.489.10.3938/jkps.59.489Hu B, Zhou C. Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Phys Rev E. 2000;61:R1001–R1004. doi: 10.1103/PhysRevE.61.R1001.10.1103/PhysRevE.61.R100111046523Huber MT, Braun HA. Stimulus-response curves of a neuronal model for noisy subthreshold oscillations and related spike generation. Phys Rev E. 2006;73:041929. doi: 10.1103/PhysRevE.73.041929.10.1103/PhysRevE.73.04192916711858Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J. Phase synchronization in ensembles of bursting oscillators. Phys Rev Lett. 2004;93:134101. doi: 10.1103/PhysRevLett.93.134101.10.1103/PhysRevLett.93.13410115524723Izhikevich EM. Bursting. Scholarpedia. 2006;1(3):1300. doi: 10.4249/scholarpedia.1300.10.4249/scholarpedia.1300Izhikevich EM. Dynamical systems in neuroscience. Cambridge: MIT Press; 2007.Izhikevich EH, Edelman GM. Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA. 2008;105:3593–3598. doi: 10.1073/pnas.0712231105.10.1073/pnas.0712231105PMC226516018292226Kaiser M, Hilgetag CC. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol. 2006;2:e95. doi: 10.1371/journal.pcbi.0020095.10.1371/journal.pcbi.0020095PMC151326916848638Kim SY, Lim W. Sparsely-synchronized brain rhythm in a small-world neural network. J Korean Phys Soc. 2013;63:104–113. doi: 10.3938/jkps.63.104.10.3938/jkps.63.104Kim SY, Lim W. Coupling-induced population synchronization in an excitatory population of subthreshold Izhikevich neurons. Cogn Neurodyn. 2013;7:495–503. doi: 10.1007/s11571-013-9256-y.10.1007/s11571-013-9256-yPMC382514624427222Kim SY, Lim W. Realistic thermodynamic and statistical-mechanical measures for neural synchronization. J Neurosci Methods. 2014;226:161–170. doi: 10.1016/j.jneumeth.2013.12.013.10.1016/j.jneumeth.2013.12.01324487016Kim SY, Lim W (2014b) Thermodynamic and statistical-mechanical measures for characterization of the burst and spike synchronizations of bursting neurons. e-print: arXiv:1403.3994 [q-bio.NC]Kim SY, Lim W (2014c) Effect of small-world connectivity on fast sparsely synchronized cortical rhythms. e-print: arXiv:1403.1034 [q-bio.NC]Kim SY, Kim Y, Hong DG, Kim J, Lim W. Stochastic bursting synchronization in a population of subthreshold Izhikevich neurons. J Korean Phys Soc. 2012;60:1441–1447. doi: 10.3938/jkps.60.1441.10.3938/jkps.60.1441Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A. Measuring spike train synchrony. J Neurosci Methods. 2007;165:151–161. doi: 10.1016/j.jneumeth.2007.05.031.10.1016/j.jneumeth.2007.05.03117628690Kreuz T, Chicharro D, Greschner M, Andrzejak RG. Time-resolved and time-scale adaptive measures of spike train synchrony. J Neurosci Methods. 2011;195:92–106. doi: 10.1016/j.jneumeth.2010.11.020.10.1016/j.jneumeth.2010.11.02021129402Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F. Monitoring spike train synchrony. J Neurophysiol. 2013;109:1457–1472. doi: 10.1152/jn.00873.2012.10.1152/jn.00873.201223221419Kuramoto Y. Chemical oscillations, waves and turbulence. New York: Dover; 2003.Kwon O, Moon HT. Coherence resonance in small-world networks of excitable cells. Phys Lett A. 2002;298:319–324. doi: 10.1016/S0375-9601(02)00575-3.10.1016/S0375-9601(02)00575-3Lago-Fernández LF, Huerta R, Corbacho F, Sigüenza JA. Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett. 2000;84:2758–2761. doi: 10.1103/PhysRevLett.84.2758.10.1103/PhysRevLett.84.275811017318Lameu EL, Batista CAS, Batista AM, Larosz K, Viana RL, Lopes SR, Kurths J. Suppression of bursting synchronization in clustered scale-free (rich-club) neural networks. Chaos. 2012;22:043149. doi: 10.1063/1.4772998.10.1063/1.477299823278084Larimer P, Strowbridge BW. Nonrandom local circuits in the dentate gyrus. J Neurosci. 2008;28:12212–12223. doi: 10.1523/JNEUROSCI.3612-08.2008.10.1523/JNEUROSCI.3612-08.2008PMC554675519020015Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87:198701. doi: 10.1103/PhysRevLett.87.198701.10.1103/PhysRevLett.87.19870111690461Latora V, Marchiori M. Economic small-world behavior in weighted networks. Eur Phys J B. 2003;32:249–263. doi: 10.1140/epjb/e2003-00095-5.10.1140/epjb/e2003-00095-5Liang X, Tang M, Dhamala M, Liu Z. Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys Rev E. 2009;80:066202. doi: 10.1103/PhysRevE.80.066202.10.1103/PhysRevE.80.06620220365249Lim W, Kim SY. Statistical-mechanical measure of stochastic spiking coherence in a population of inhibitory subthreshold neuron. J Comput Neurosci. 2011;31:667–677. doi: 10.1007/s10827-011-0330-3.10.1007/s10827-011-0330-321538140Lizier JT, Pritam S, Prokopenko M. Information dynamics in small-world Boolean networks. Artif Life. 2011;17:293–314. doi: 10.1162/artl_a_00040.10.1162/artl_a_0004021762020Longtin A. Autonomous stochastic resonance in bursting neurons. Phys Rev E. 1997;55:868–876. doi: 10.1103/PhysRevE.55.868.10.1103/PhysRevE.55.868Longtin A, Hinzer K. Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors. Neural Comput. 1996;8:217–255. doi: 10.1162/neco.1996.8.2.215.10.1162/neco.1996.8.2.2158581883Lu Q, Tian J. Synchronization and stochastic resonance of the small-world neural network based on the CPG. Cogn Neurodyn. 2014;8:217–226. doi: 10.1007/s11571-013-9275-8.10.1007/s11571-013-9275-8PMC401206524808930Meng P, Wang Q, Lu Q. Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling. Cogn Neurodyn. 2013;7:197–212. doi: 10.1007/s11571-012-9226-9.10.1007/s11571-012-9226-9PMC365414924427201Milgram S. The small-world problem. Psychol Today. 1967;1:61–67.Neiman A. Coherence resonance. Scholarpedia. 2007;2(11):1442. doi: 10.4249/scholarpedia.1442.10.4249/scholarpedia.1442Omelchenko I, Rosenblum M, Pikovsky A. Synchronization of slow-fast systems. Eur Phys J Special Top. 2010;191:3–14. doi: 10.1140/epjst/e2010-01338-4.10.1140/epjst/e2010-01338-4Ozer M, Perc M, Uzuntarla M. Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving. Phys Lett A. 2009;373:964–968. doi: 10.1016/j.physleta.2009.01.034.10.1016/j.physleta.2009.01.034Perc M. Stochastic resonance on excitable small-world networks via a pacemaker. Phys Rev E. 2007;76:066203. doi: 10.1103/PhysRevE.76.066203.10.1103/PhysRevE.76.06620318233900Pereira T, Baptista M, Kurths J. Multi-time-scale synchronization and information processing in bursting neuron networks. Eur Phys J Special Top. 2007;146:155–168. doi: 10.1140/epjst/e2007-00176-9.10.1140/epjst/e2007-00176-9Qu J, Wang R, Yan C, Du Y. Oscillations and synchrony in a cortical neural network. Cogn Neurodyn. 2014;8:157–166. doi: 10.1007/s11571-013-9268-7.10.1007/s11571-013-9268-7PMC394545924624235Riecke H, Roxin A, Madruga S, Solla S. Multiple attractors, long chaotic transients, and failure in small-world networks of excitable neurons. Chaos. 2007;17:026110. doi: 10.1063/1.2743611.10.1063/1.274361117614697Rinzel J (1985) Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ (eds) Ordinary and partial differential equations. Lecture notes in mathematics, vol 1151. Springer, Berlin, pp 304–316Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis, and neurosciences. Lecture Notes in biomathematics, vol 71. Springer, Berlin, pp 267–281Rose RM, Hindmarsh JL. A model of a thalamic neuron. Proc R Soc Lond Ser B. 1985;225:161–193. doi: 10.1098/rspb.1985.0057.10.1098/rspb.1985.00572864694Roxin A, Riecke H, Solla SA. Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett. 2004;92:198101. doi: 10.1103/PhysRevLett.92.198101.10.1103/PhysRevLett.92.19810115169447Rubin JE. Burst synchronization. Scholarpedia. 2007;2(10):1666. doi: 10.4249/scholarpedia.1666.10.4249/scholarpedia.1666San Miguel M, Toral R. Stochastic effects in physical systems. In: Martinez J, Tiemann R, Tirapegui E, editors. Instabilities and nonequilibrium structures VI. Dordrecht: Kluwer; 2000. pp. 35–130.Shanahan M. Dynamical complexity in small-world networks of spiking neurons. Phys Rev E. 2008;78:041924. doi: 10.1103/PhysRevE.78.041924.10.1103/PhysRevE.78.04192418999472Shi X, Lu Q. Firing patterns and complete synchronization of coupled Hindmarsh–Rose neurons. Chin Phys. 2005;14:77–85. doi: 10.1088/1009-1963/14/1/016.10.1088/1009-1963/14/1/016Shi X, Lu Q. Burst synchronization of electrically and chemically coupled map-based neurons. Physica A. 2009;388:2410–2419. doi: 10.1016/j.physa.2009.03.008.10.1016/j.physa.2009.03.008Shimazaki H, Shinomoto S. Kernel band width optimization in spike rate estimation. J Comput Neurosci. 2010;29:171–182. doi: 10.1007/s10827-009-0180-4.10.1007/s10827-009-0180-4PMC294002519655238Shinohara Y, Kanamaru T, Suzuki H, Horita T, Aihara K. Array-enhanced coherence resonance and forced dynamics in coupled FitzHugh–Nagumo neurons with noise. Phys Rev E. 2002;65:051906. doi: 10.1103/PhysRevE.65.051906.10.1103/PhysRevE.65.05190612059592Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 2005;3:e68. doi: 10.1371/journal.pbio.0030068.10.1371/journal.pbio.0030068PMC105488015737062Sporns O. Networks of the brain. Cambridge: MIT Press; 2011.Sporns O, Honey CJ. Small worlds inside big brains. Proc Natl Acad Sci USA. 2006;103:19219–19220. doi: 10.1073/pnas.0609523103.10.1073/pnas.0609523103PMC174820717159140Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex. 2000;10:127–141. doi: 10.1093/cercor/10.2.127.10.1093/cercor/10.2.12710667981Strogatz SH. Exploring complex networks. Nature. 2001;410:268–276. doi: 10.1038/35065725.10.1038/3506572511258382Sun X, Lei J, Perc M, Kurths J, Chen G. Burst synchronization transitions in a neuronal network of subnetworks. Chaos. 2011;21:016110. doi: 10.1063/1.3559136.10.1063/1.355913621456852Tanaka G, Ibarz B, Sanjuan MA, Aihara K. Synchronization and propagation of bursts in networks of coupled map neurons. Chaos. 2006;16:013113. doi: 10.1063/1.2148387.10.1063/1.214838716599744Tiesinga PHE, Fellous JM, Jose JV, Sejnowski TJ. Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus. 2001;11:251–274. doi: 10.1002/hipo.1041.10.1002/hipo.104111769308van Rossum MCW. A novel spike distance. Neural Comput. 2001;13:751–763. doi: 10.1162/089976601300014321.10.1162/08997660130001432111255567van Vreeswijk C, Hansel D. Patterns of synchrony in neural networks with adaptation. Neural Comput. 2001;13:959–992. doi: 10.1162/08997660151134280.10.1162/0899766015113428011359640van Vreeswijk C, Abbott LF, Ermentrout GB. When inhibition not excitation synchronizes neural firing. J Comput Neurosci. 1994;1:313–321. doi: 10.1007/BF00961879.10.1007/BF009618798792237Victor JD, Purpura KP. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol. 1996;76:1310–1326.8871238Victor JD, Purpura KP. Metric-space analysis of spike trains: theory, algorithms, and application. Network. 1997;8:127–164. doi: 10.1088/0954-898X/8/2/003.10.1088/0954-898X/8/2/003Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90:1195–1268. doi: 10.1152/physrev.00035.2008.10.1152/physrev.00035.2008PMC292392120664082Wang XJ, Buzsáki G. Gamma oscillations by synaptic inhibition in a hippocampal interneuronal network. J Neurosci. 1996;16:6402–6413.PMC65789028815919Wang XJ, Rinzel J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 1992;4:84–97. doi: 10.1162/neco.1992.4.1.84.10.1162/neco.1992.4.1.84Wang Y, Chik DTW, Wang ZD. Coherence resonance and noise-induced synchronization in globally coupled Hodgkin–Huxley neurons. Phys Rev E. 2000;61:740–746. doi: 10.1103/PhysRevE.61.740.10.1103/PhysRevE.61.74011046318Wang Q, Duan Z, Perc M, Chen G. Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. Europhys Lett. 2008;83:50008. doi: 10.1209/0295-5075/83/50008.10.1209/0295-5075/83/50008Wang Q, Perc M, Duan Z, Chen G. Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Physica A. 2010;389:3299–3306. doi: 10.1016/j.physa.2010.03.031.10.1016/j.physa.2010.03.031Wang QY, Murks A, Perc M, Lu QS. Taming desynchronized bursting with delays in the Macaque cortical network. Chin Phys B. 2011;20:040504. doi: 10.1088/1674-1056/20/4/040504.10.1088/1674-1056/20/4/040504Wang Q, Chen G, Perc M. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS One. 2011;6:e15851. doi: 10.1371/journal.pone.0015851.10.1371/journal.pone.0015851PMC301705021253015Wang H, Wang Q, Lu Q, Zheng Y. Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cogn Neurodyn. 2013;7:121–131. doi: 10.1007/s11571-012-9222-0.10.1007/s11571-012-9222-0PMC359543224427196Watts DJ. Small worlds: the dynamics of networks between order and randomness. Princeton: Princeton University Press; 2003.Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–442. doi: 10.1038/30918.10.1038/309189623998White J, Chow CC, Ritt J, Soto-Trevino C, Kopell N. Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci. 1998;5:5–16. doi: 10.1023/A:1008841325921.10.1023/A:10088413259219580271Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol. 2000;38:315336. doi: 10.1016/S0167-8760(00)00173-2.10.1016/S0167-8760(00)00173-211102670Yu S, Huang D, Singer W, Nikolie D. A small world of neuronal synchrony. Cereb Cortex. 2008;18:2891–2901. doi: 10.1093/cercor/bhn047.10.1093/cercor/bhn047PMC258315418400792Yu H, Wang J, Deng B, Wei X, Wong YK, Chan WL, Tsang KM, Yu Z. Chaotic phase synchronization in small world networks of bursting neurons. Chaos. 2011;21:013127. doi: 10.1063/1.3565027.10.1063/1.356502721456841Zheng Y, Wang Q, Danca MF. Noise induced complexity: patterns and collective phenomena in a small-world neuronal network. Cogn Neurodyn. 2014;8:143–149. doi: 10.1007/s11571-013-9257-x.10.1007/s11571-013-9257-xPMC394546224624233Zhou C, Kurths J. Spatiotemporal coherence resonance of phase synchronization in weakly coupled chaotic oscillators. Phys Rev E. 2002;65:040101. doi: 10.1103/PhysRevE.65.040101.10.1103/PhysRevE.65.04010112005793Zhou C, Kurths J, Hu B. Array-enhanced coherence resonance: nontrivial effects of heterogeneity and spatial independence of noise. Phys Rev Lett. 2001;87:098101. doi: 10.1103/PhysRevLett.87.098101.10.1103/PhysRevLett.87.09810111531600