A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of an NAD⁺ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. | LitMetric

Inhibition of an NAD⁺ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells.

Stem Cells Transl Med

Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Published: May 2015

The tumorigenic potential of human pluripotent stem cells (hPSCs) is a major limitation to the widespread use of hPSC derivatives in the clinic. Here, we demonstrate that the small molecule STF-31 is effective at eliminating undifferentiated hPSCs across a broad range of cell culture conditions with important advantages over previously described methods that target metabolic processes. Although STF-31 was originally described as an inhibitor of glucose transporter 1, these data support the reclassification of STF-31 as a specific NAD⁺ salvage pathway inhibitor through the inhibition of nicotinamide phosphoribosyltransferase (NAMPT). These findings demonstrate the importance of an NAD⁺ salvage pathway in hPSC biology and describe how inhibition of NAMPT can effectively eliminate hPSCs from culture. These results will advance and accelerate the development of safe, clinically relevant hPSC-derived cell-based therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414215PMC
http://dx.doi.org/10.5966/sctm.2014-0163DOI Listing

Publication Analysis

Top Keywords

nad⁺ salvage
12
salvage pathway
12
human pluripotent
8
pluripotent stem
8
stem cells
8
inhibition nad⁺
4
pathway efficient
4
efficient selective
4
selective toxicity
4
toxicity human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!