Leucine-rich repeat kinase 2 (LRRK2) is the single most common genetic cause of both familial and sporadic Parkinson's disease (PD), both of which share pathogenetic and neurologic similarities with human immunodeficiency virus 1 (HIV-1)-associated neurocognitive disorders (HAND). Pathologic LRRK2 activity may also contribute to neuroinflammation, because microglia lacking LRRK2 exposed to proinflammatory stimuli have attenuated responses. Because microglial activation is a hallmark of HIV-1 neuropathology, we have investigated the role of LRRK2 activation using in vitro and in vivo models of HAND. We hypothesize that LRRK2 is a key modulator of microglial inflammatory responses, which play a pathogenic role in both HAND and PD, and that these responses may cause or exacerbate neuronal damage in these diseases. The HIV-1 Tat protein is a potent neurotoxin produced during HAND that induces activation of primary microglia in culture and long-lasting neuroinflammation and neurotoxicity when injected into the CNS of mice. We found that LRRK2 inhibition attenuates Tat-induced pS935-LRRK2 expression, proinflammatory cytokine and chemokine expression, and phosphorylated p38 and Jun N-terminal kinase signaling in primary microglia. In our murine model, cortical Tat injection in LRRK2 knock-out (KO) mice results in significantly diminished neuronal damage, as assessed by microtubule-associated protein 2 (MAP2), class III β-tubulin TUJ1, synapsin-1, VGluT, and cleaved caspase-3 immunostaining. Furthermore, Tat-injected LRRK2 KO animals have decreased infiltration of peripheral neutrophils, and the morphology of microglia from these mice were similar to that of vehicle-injected controls. We conclude that pathologic activation of LRRK2 regulates a significant component of the neuroinflammation associated with HAND.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381000PMC
http://dx.doi.org/10.1523/JNEUROSCI.0650-14.2015DOI Listing

Publication Analysis

Top Keywords

lrrk2
9
leucine-rich repeat
8
repeat kinase
8
neuroinflammation neurotoxicity
8
human immunodeficiency
8
immunodeficiency virus
8
neurocognitive disorders
8
neuronal damage
8
primary microglia
8
hand
5

Similar Publications

Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs within small extracellular vesicles attenuate LRRK2-induced neurodegeneration in Parkinson's disease models.

J Control Release

December 2024

Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213003, China. Electronic address:

Rationale: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene play an important role in Parkinson's disease (PD) pathogenesis, and downregulation of LRRK2 has become a promising therapy for PD. Here, we developed a synthetic biology strategy for the self-assembly and delivery of small interfering RNAs (siRNAs) of LRRK2 into the substantia nigra via small extracellular vesicles (sEVs) using a genetic circuit (in the form of naked DNA plasmid) to attenuate PD-like phenotypes in mouse model.

Methods: We generated the genetic circuit encoding both a neuron-targeting rabies virus glycoprotein (RVG) tag and a LRRK2 siRNA under the control of a cytomegalovirus (CMV) promoter, and assessed its therapeutic effects using LRRK2 mouse models of PD.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disease affecting nearly 10 million people worldwide and placing a heavy medical burden on both society and families. However, due to the complexity of its pathological mechanisms, current treatments for PD can only alleviate patients' symptoms. Therefore, novel therapeutic strategies are urgently sought in clinical practice.

View Article and Find Full Text PDF

Brain age in genetic and idiopathic Parkinson's disease.

Brain Commun

December 2024

Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, Rostock 18147, Germany.

The brain-age gap, i.e. the difference between the brain age estimated from structural MRI data and the chronological age of an individual, has been proposed as a summary measure of brain integrity in neurodegenerative diseases.

View Article and Find Full Text PDF

Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!