CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg) are critical elements for maintaining immune tolerance, for instance to exogenous antigens that are introduced during therapeutic interventions such as cell/organ transplant or gene/protein replacement therapy. Coadministration of antigen with rapamycin simultaneously promotes deletion of conventional CD4(+) T cells and induction of Treg. Here, we report that the cytokine FMS-like receptor tyrosine kinase ligand (Flt3L) enhances the in vivo effect of rapamycin. This occurs via selective expansion of plasmacytoid dendritic cells (pDCs), which further augments the number of Treg. Whereas in conventional DCs, rapamycin effectively blocks mammalian target of rapamycin (mTOR) 1 signaling induced by Flt3L, increased mTOR1 activity renders pDCs more resistant to inhibition by rapamycin. Consequently, Flt3L and rapamycin synergistically promote induction of antigen-specific Treg via selective expansion of pDCs. This concept is supported by the finding that Treg induction is abrogated upon pDC depletion. The combination with pDCs and rapamycin is requisite for Flt3L/antigen-induced Treg induction because Flt3L/antigen by itself fails to induce Treg. As co-administering Flt3L, rapamycin, and antigen blocked CD8(+) T-cell and antibody responses in models of gene and protein therapy, we conclude that the differential effect of rapamycin on DC subsets can be exploited for improved tolerance induction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424416 | PMC |
http://dx.doi.org/10.1182/blood-2014-09-599266 | DOI Listing |
J Exp Biol
January 2025
Department of Biology, Colorado State University, Fort Collins, CO, USA.
Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
The First Department of Cardiology, Beidahuang Industry Group General Hospital, Harbin, 150000, Heilongjiang Province, China.
Objective: it was to evaluate the efficacy and safety of rapamycin-eluting stents at different doses in the treatment of coronary artery narrowing in miniature pigs.
Methods: a total of 20 miniature pigs were randomly assigned into four groups: S1 group (low-dose rapamycin-coated stent, 55 µg/mm), S2 group (medium-dose rapamycin-coated stent, 120 µg/mm), S3 group (high-dose rapamycin-coated stent, 415 µg/mm), and D0 group (bare metal stent). The stent size was 3.
BMC Cancer
January 2025
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
Background: Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide. Various factors in the tumor environment (TME) can lead to the activation of endoplasmic reticulum stress (ERS), thereby affecting the occurrence and development of tumors. The objective of our study was to develop and validate a radiogenomic signature based on ERS to predict prognosis and systemic combination therapy response.
View Article and Find Full Text PDFSci Rep
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.
View Article and Find Full Text PDFKidney Int
February 2025
Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel Switzerland. Electronic address:
BK polyomavirus remains a vexing issue in kidney transplantation. There are no antiviral drugs, and solely reducing immunosuppression is recommended for management. However, evidence from randomized controlled studies lacks defining clearance of BK polyomavirus-DNAemia and/or nephropathy as a primary outcome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!