Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, ettringite precipitation was theoretically and experimentally evaluated as a means of sulphate removal. The results showed that ettringite precipitation is an effective and reliable method for sulphate removal. Synthetically prepared samples which were simulated to total wastewaters originating from the textile industry (sulphate concentration of 0.06 M) and to dye bath effluent (sulphate concentration of 0.22 M) were subjected to ettringite precipitation using the systems with NaSO-AlCl-Ca(OH)-NaOH, NaSO-AlCl-Ca(OH), and NaCO-NaSO-AlCl-Na(OH). An equilibrium model involving precipitation more than one solid phase and with ionic strength correction was used to predict the sulphate removal efficiency as well as solution composition. The optimum pH for ettringite precipitation in all systems was found to be around 12.0. By the application of the method, 0.06 M initial sulphate concentration was reduced down to 60 mg/L for synthetically prepared samples and 325 mg/L for real wastewater. For the concentrated samples of 0.22 M initial sulphate, remaining sulphate levels varying between 230 and 280 mg/L were obtained for both synthetic and real wastewater samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2015.1026245 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!