Acceleration effect of sodium selenite on yeast growth and fermentative capability.

J Gen Appl Microbiol

Hubei Collaborative Innovation Center of Industrial Fermentation, Research Center of Food Fermentation Engineering and Technology of Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology.

Published: July 2015

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.61.27DOI Listing

Publication Analysis

Top Keywords

acceleration sodium
4
sodium selenite
4
selenite yeast
4
yeast growth
4
growth fermentative
4
fermentative capability
4
acceleration
1
selenite
1
yeast
1
growth
1

Similar Publications

Combined negative pressure wound therapy with new wound dressings to repair a ruptured giant omphalocele in a neonate: a case report and literature review.

BMC Pediatr

January 2025

Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, Sichuan Province, China.

Background: Current treatment of giant omphalocele in newborns is not standardized. The main treatments include one-time repair and staged surgery using synthetic and biologic mesh, or silos. However, surgery can lead to various postoperative complications.

View Article and Find Full Text PDF

Effective denitrification from landfill leachate using magnetic PVA/CMC/DE carrier immobilized microorganisms.

Waste Manag

January 2025

Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China.

Ammonia nitrogen (NH-N) discharge has caused eutrophication of water bodies and harm to humans and organisms. In this work, polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), diatomite (DE), and FeO were used to prepare magnetic immobilized carriers by encapsulating microorganisms for the treatment of NH-N wastewater. The response surface methodology was used to explore the optimal ratio of the immobilized carriers.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Sodium borohydride dihydrate (NaBH·2HO) forms through dihydrogen bonding between the hydridic hydrogen of the BH ion and the protonic hydrogen of the water molecule. High-pressure structural changes in NaBH·2HO, observed up to 11 GPa through X-ray diffraction and Raman scattering spectroscopy, were analyzed to assess the influence of dihydrogen bonds on its crystal structure. At approximately 4.

View Article and Find Full Text PDF

Combining energy harvesting with energy storage systems in a single device could offer great advantages for continuous power supply in both indoor and outdoor electric applications. In this work, we demonstrate a photochargeable sodium-ion battery (PSIB) based on a photoactive cathode of two-dimensional crystals of MoSe. This photocathode enables spontaneous photodriven charging of a sodium-ion battery cathode under illumination and an increase in the reversible capacity to 29% at 600 mA g compared to that under dark conditions during galvanostatic cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!