We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm(-1), and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm(-1) for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4916052DOI Listing

Publication Analysis

Top Keywords

rotamers m-methoxystyrene
8
resonant two-photon
8
two-photon ionization
8
threshold ionization
8
ionization
5
identification rotamers
4
m-methoxystyrene resonant
4
ionization mass
4
mass analyzed
4
analyzed threshold
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!