Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201500647 | DOI Listing |
Chemphyschem
December 2024
Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.
Recently, the research on developing lead-free double-B-cation halide perovskites has attracted attention. However, CsInBiCl, the most promising one, was shown to be thermodynamically unstable. To improve the stability, organic dication DiMA (i.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China.
The power conversion efficiency (PCE) of single-junction organic solar cells (OSCs) has been promoted above 20%. Device up-scaling draws more and more research attentions. Besides the high PCE for devices with up-scalable fabrication methods and conditions, achieving high stability simultaneously is essential for pushing industrialization of this technology.
View Article and Find Full Text PDFAdv Mater
December 2024
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Designing donor (D) and acceptor (A) structures and discovering promising D-A combinations can effectively improve organic photovoltaic (OPV) device performance. However, to obtain excellent power conversion efficiency (PCE), the trial-and-error structural design in the infinite chemical space is time-consuming and costly. Herein, a deep learning (DL)-assisted design framework for OPV materials is proposed.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
An all-perovskite tandem cell based on narrow-bandgap mixed tin-lead (Sn-Pb) alloyed perovskites is a potential photovoltaic device whose power conversion efficiency can exceed the Shockley-Queisser limit of a single-junction solar cell, 33%. However, comprehensive descriptions of the charge-carrier mobilities and transport mechanisms in the mixed Sn-Pb perovskite system remain elusive. Herein, we integrate density functional theory (DFT) calculations with charge transport models to provide more insight into the electronic structures and transport behaviors of these materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!