To understand biological processes at the cellular level, a general approach is to alter the cells' environment and to study their chemical responses. Herein, we present the implementation of an electrochemical push-pull probe, which combines a microfluidic system with a microelectrode, as a tool for locally altering the microenvironment of few adherent living cells by working in two different perturbation modes, namely electrochemical (i.e., electrochemical generation of a chemical effector compound) and microfluidic (i.e., infusion of a chemical effector compound from the pushing microchannel, while simultaneously aspirating it through the pulling channel, thereby focusing the flow between the channels). The effect of several parameters such as flow rate, working distance, and probe inclination angle on the affected area of adherently growing cells was investigated both theoretically and experimentally. As a proof of concept, localized fluorescent labeling and pH changes were purposely introduced to validate the probe as a tool for studying adherent cancer cells through the control over the chemical composition of the extracellular space with high spatiotemporal resolution. A very good agreement between experimental and simulated results showed that the electrochemical perturbation mode enables to affect precisely only a few living cells localized in a high-density cell culture.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b00455DOI Listing

Publication Analysis

Top Keywords

electrochemical push-pull
8
push-pull probe
8
living cells
8
chemical effector
8
effector compound
8
electrochemical
6
probe
4
probe scanning
4
scanning electrochemical
4
electrochemical microscopy
4

Similar Publications

Synthesis of Nonplanar Push-Pull Chromophores with Various Heterocyclic Moieties via [2 + 2] Cycloaddition-Retroelectrocyclization Reaction.

J Org Chem

January 2025

Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

A series of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives with various heterocyclic moieties, including pyridine, carbazole, indole, and benzothiadiazole, was newly synthesized through a [2 + 2] cycloaddition-retroelectrocyclization reaction. Symmetric electron-rich 1,3-butadiynes with end-capped heterocyclic substituents were reacted with tetracyanoethylene (TCNE), yielding the target TCBD products in 60-80% yields under ambient or mild heating conditions. The thermal stability and optical and electrochemical properties of both 1,3-butadiyne precursors and the corresponding TCBD derivatives were investigated by using thermogravimetric analysis (TGA), UV-vis spectroscopy, and cyclic voltammetry (CV).

View Article and Find Full Text PDF

We have developed two triazole-based covalent organic polymers (COPs) with donor-acceptor motifs. The keto-enriched COP demonstrated exceptional oxygen activation electrochemical stimuli, driven by strong push-pull interactions. studies and DFT calculations confirmed the critical role of enamine carbon positive charges in enhancing performance, setting new benchmarks in COP design.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a newly designed compact CMOS potentiostat for controlling voltage and measuring current in electrochemical cells during oxidation-reduction reactions.
  • The circuitry includes a two-stage amplifier and current mirror blocks, and it utilizes cyclic voltammetry within a voltage range of ±0.8 V and various scan rates.
  • Experimental tests with a potassium ferrocyanide solution show that this new design yields results comparable to conventional methods used in the field.
View Article and Find Full Text PDF

Push-Pull Electrolyte Design Strategy Enables High-Voltage Low-Temperature Lithium Metal Batteries.

J Am Chem Soc

October 2024

Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

Lithium (Li) metal batteries hold significant promise in elevating energy density, yet their performance at ultralow temperatures remains constrained by sluggish charge transport kinetics and the formation of unstable interphases. In conventional electrolyte systems, lithium ions are tightly locked in the solvation structure, thereby engendering difficulty in the desolvation process and further exacerbating solvent decomposition. Herein, we propose a new push-pull electrolyte design strategy, utilizing molecular electrostatic potential (ESP) screening to identify 2,2-difluoroethyl trifluoromethanesulfonate (DTF) as an optimal cosolvent.

View Article and Find Full Text PDF

Two distinct families of NLOphores featuring hydrazone donors were synthesized using click-type [2 + 2] cycloaddition retroelectrocyclizations (CA-RE). Despite the limitations in the substrate scope, it was shown for the first time that hydrazone-activated alkynes could undergo reactions with TCNE/TCNQ. The electrochemical, photophysical, and second-order nonlinear optical (NLO) characteristics of the chromophores were analyzed utilizing experimental and computational approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!