Objective: This study was conducted to investigate neuroprotective effects of a high fat/low carbohydrate and protein diet (ketogenic diet, KD) in a model of N-methyl D-aspartate (NMDA)-induced retinal ganglion cell (RGC) damage in juvenile and young adult rats.

Methods: Juvenile (30-35 days old) and young adult (56-70 days old) female Brown Norway rats were fed the KD for 21 days; rats exposed to a standard rodent diet (SRD) served as controls. The main constituents of the KD used in the present study were approximately 80% fats, 8% proteins, and less than 1% carbohydrates. On day 14 of exposure to the KD (or the SRD in the control group), each rat received a single intravitreal injection of NMDA; RGCs were then retrogradely labelled by hydroxystilbamidine on day 19 and collected on day 21 to assess the degree of damage induced by NMDA. Blood biomarkers to confirm the expected metabolic response to the KD (i.e. ketosis and hypoglycaemia) were also assessed.

Results: Although both the juvenile and young adult rats developed comparable ketosis and hypoglycaemia when fed the KD, NMDA-induced loss in RGCs was significantly attenuated only in juvenile rats exposed to the KD in comparison with those fed the SRD; exposure to the KD had no protective effect in young adult rats. In summary, exposure to the KD had a neuroprotective effect in NMDA-induced RGC damage in juvenile rats, but not in young adult rats.

Conclusion: These results support further exploration of metabolic interventions to treat optic neuropathies associated with neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000379753DOI Listing

Publication Analysis

Top Keywords

young adult
20
ketogenic diet
8
retinal ganglion
8
rgc damage
8
damage juvenile
8
juvenile young
8
rats exposed
8
ketosis hypoglycaemia
8
adult rats
8
juvenile rats
8

Similar Publications

The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.

View Article and Find Full Text PDF

rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.

Brain Struct Funct

January 2025

Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.

The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.

View Article and Find Full Text PDF

Left neck and right biceps muscle vibrations have similar effects on perceived body orientation.

Exp Brain Res

January 2025

Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Vibrating muscles to manipulate proprioceptive input creates the sensation of an apparent change in body position. This study investigates whether vibrating the right biceps muscle has similar effects as vibrating the left posterior neck muscles. Based on previous observations, we hypothesized that both types of muscle vibration would shift the perception of healthy subjects' subjective straight-ahead (SSA) orientation in the horizontal plane to the left.

View Article and Find Full Text PDF

Outcomes of electrical injuries in the emergency department: epidemiology, severity predictors, and chronic sequelae.

Eur J Trauma Emerg Surg

January 2025

Emergency Department, Habib bourguiba university hospital, Faculty of Medicine, Sfax University, Majida Boulila Avenue, Sfax, Tunisia.

Introduction: Electrical injuries (EIs) represent a significant clinical challenge due to their complex pathophysiology and variable presentation, ranging from minor burns to severe internal organ damage. Despite their prevalence in both; domestic and occupational settings, there remains a rareness of systematic guidelines and comprehensive literature to aid clinicians in effectively managing these injuries. Understanding these factors is crucial for developing protocols that can mitigate the risk of delayed complications, such as cardiac arrhythmias, in patients who initially appear stable.

View Article and Find Full Text PDF

Sleep is influenced by various factors, including social, economic, genetic, and medical factors, and work and study schedules. Medical students are highly susceptible to sleep-related problems. In this study, we aimed to evaluate the sleep patterns and quality of medical students and determine their correlation with academic achievement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!