Two-particle interference is a fundamental feature of quantum mechanics, and is even less intuitive than wave-particle duality for a single particle. In this duality, classical concepts--wave or particle--are still referred to, and interference happens in ordinary space-time. On the other hand, two-particle interference takes place in a mathematical space that has no classical counterpart. Entanglement lies at the heart of this interference, as it does in the fundamental tests of quantum mechanics involving the violation of Bell's inequalities. The Hong, Ou and Mandel experiment is a conceptually simpler situation, in which the interference between two-photon amplitudes also leads to behaviour impossible to describe using a simple classical model. Here we report the realization of the Hong, Ou and Mandel experiment using atoms instead of photons. We create a source that emits pairs of atoms, and cause one atom of each pair to enter one of the two input channels of a beam-splitter, and the other atom to enter the other input channel. When the atoms are spatially overlapped so that the two inputs are indistinguishable, the atoms always emerge together in one of the output channels. This result opens the way to testing Bell's inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics, and to testing theories of the quantum-to-classical transition. Our work also demonstrates a new way to benchmark non-classical atom sources that may be of interest for quantum information processing and quantum simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature14331 | DOI Listing |
Phys Rev Lett
April 2024
Institut für Theoretische Physik, Universität Leipzig, Brüderstraße 16, 04103 Leipzig, Germany.
Unlike bosons and fermions, quasiparticles in two-dimensional quantum systems, known as anyons, exhibit statistical exchange phases that range between 0 and π. In fractional quantum Hall states, these anyons, possessing a fraction of the electron charge, traverse along chiral edge channels. This movement facilitates the creation of anyon colliders, where coupling different edge channels through a quantum point contact enables the observation of two-particle interference effects.
View Article and Find Full Text PDFSci Rep
February 2024
School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
Although position and time have different mathematical roles in quantum mechanics, with one being an operator and the other being a parameter, there is a space-time duality in quantum phenomena-a lot of quantum phenomena that were first observed in the spatial domain were later observed in the temporal domain as well. In this context, we propose a modified version of the double-double-slit experiment using entangled atom pairs to observe a non-local interference in the arrival time distribution, which is analogous to the non-local interference observed in the arrival position distribution. However, computing the arrival time distribution in quantum mechanics is a challenging open problem, and so to overcome this problem we employ a Bohmian treatment.
View Article and Find Full Text PDFPhys Rev Lett
March 2023
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, Vienna A-1090, Austria.
Measuring entanglement is an essential step in a wide range of applied and foundational quantum experiments. When a two-particle quantum state is not pure, standard methods to measure the entanglement require detection of both particles. We realize a conceptually new method for verifying and measuring entanglement in a class of two-part (bipartite) mixed states.
View Article and Find Full Text PDFNat Commun
October 2022
Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, Cedex, France.
Quasi-particles are elementary excitations of condensed matter quantum phases. Demonstrating that they keep quantum coherence while propagating is a fundamental issue for their manipulation for quantum information tasks. Here, we consider anyons, the fractionally charged quasi-particles of the Fractional Quantum Hall Effect occurring in two-dimensional electronic conductors in high magnetic fields.
View Article and Find Full Text PDFPhys Rev Lett
August 2021
Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
When multiple quantum emitters radiate, their emission rate may be enhanced or suppressed due to collective interference in a process known as super- or subradiance. Such processes are well known to occur also in light emission from free electrons, known as coherent cathodoluminescence. Unlike atomic systems, free electrons have an unbounded energy spectrum, and, thus, all their emission mechanisms rely on electron recoil, in addition to the classical properties of the dielectric medium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!