Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Necrotic cell death triggers a range of biological responses including a strong adaptive immune response, yet we know little about the cellular pathways that control necrotic cell death. Inhibitor studies suggest that proteases, and in particular cathepsins, drive necrotic cell death. The cathepsin B-selective inhibitor CA-074-Me blocks all forms of programmed necrosis by an unknown mechanism. We found that cathepsin B deficiency does not prevent induction of pyroptosis and lysosome-mediated necrosis suggesting that CA-074-Me blocks necrotic cell death by targeting cathepsins other than cathepsin B. A single cathepsin, cathepsin C, drives necrotic cell death mediated by the lysosome-destabilizing agent Leu-Leu-OMe (LLOMe). Here we present evidence that cathepsin C-deficiency and CA-074-Me block LLOMe killing in a distinct and cell type-specific fashion. Cathepsin C-deficiency and CA-074-Me block LLOMe killing of all myeloid cells, except for neutrophils. Cathepsin C-deficiency, but not CA-074-Me, blocks LLOMe killing of neutrophils suggesting that CA-074-Me does not target cathepsin C directly, consistent with inhibitor studies using recombinant cathepsin C. Unlike other cathepsins, cathepsin C lacks endoproteolytic activity, and requires activation by other lysosomal proteases, such as cathepsin D. Consistent with this theory, we found that lysosomotropic agents and cathepsin D downregulation by siRNA block LLOMe-mediated necrosis. Our findings indicate that a proteolytic cascade, involving cathepsins C and D, controls LLOMe-mediated necrosis. In contrast, cathepsins C and D were not required for pyroptotic cell death suggesting that distinct cathepsins control pyroptosis and lysosome-mediated necrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614982 | PMC |
http://dx.doi.org/10.4161/15384101.2014.991194 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!