We have recently identified the bacterial cell wall as the cellular target for honey antibacterial compounds; however, the chemical nature of these compounds remained to be elucidated. Using Concavalin A-affinity chromatography, we found that isolated glycoprotein fractions (glps), but not flow-through fractions, exhibited strong growth inhibitory and bactericidal properties. The glps possessed two distinct functionalities: (a) specific binding and agglutination of bacterial cells, but not rat erythrocytes and (b) non-specific membrane permeabilization of both bacterial cells and erythrocytes. The isolated glps induced concentration- and time-dependent changes in the cell shape of both E. coli and B. subtilis as visualized by light and SEM microscopy. The appearance of filaments and spheroplasts correlated with growth inhibition and bactericidal effects, respectively. The time-kill kinetics showed a rapid, >5-log10 reduction of viable cells within 15 min incubation at 1xMBC, indicating that the glps-induced damage of the cell wall was lethal. Unexpectedly, MALDI-TOF and electrospray quadrupole time of flight mass spectrometry, (ESI-Q-TOF-MS/MS) analysis of glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1) precursor that harbors three antimicrobial peptides: Jelleins 1, 2, and 4. The presence of high-mannose structures explained the lectin-like activity of MRJP1, while the presence of Jelleins in MRJP1 may explain cell wall disruptions. Thus, the observed damages induced by the MRJP1 to the bacterial cell wall constitute the mechanism by which the antibacterial effects were produced. Antibacterial activity of MRJP1 glps directly correlated with the overall antibacterial activity of honey, suggesting that it is honey's active principle responsible for this activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382210PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120238PLOS

Publication Analysis

Top Keywords

cell wall
20
antimicrobial peptides
8
peptides jelleins
8
major royal
8
royal jelly
8
jelly protein
8
bacterial cell
8
bacterial cells
8
activity mrjp1
8
antibacterial activity
8

Similar Publications

A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive.

View Article and Find Full Text PDF

Some key secondary metabolism genes are important for driving the infection process of entomopathogenic fungi; however, their chemical substance basis has not been well investigated. Here, mixtures of polyol lipids are discovered, which are synthesized through iterative chain transfer-esterification-hydrolysis cycles catalyzed by serine hydrolase during the release of online highly reducing polyketide intermediates. Importantly, an gene knockout experiment revealed that the synthesis of polyol lipids is necessary for rodlet layer formation on the cell wall of .

View Article and Find Full Text PDF

Single-fraction stereotactic body radiation therapy (SF-SBRT) for peripheral lung tumors was reviewed. Medically inoperable peripheral lung tumors eligible for SF-SBRT 34 Gray were treated. Patient characteristics, treatment and toxicity parameters were retrospectively collected, and toxicities were evaluated.

View Article and Find Full Text PDF

Transcriptomic analysis reveals potential roles of polyamine and proline metabolism in waterlogged peach roots inoculated with Funneliformis mosseae and Serendipita indica.

Tree Physiol

January 2025

Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.

Root-associated endophytic fungi can create symbiotic relationships with trees to enhance stress tolerance, but the underlying mechanisms, especially with regard to waterlogging tolerance, remain unclear. This study aimed to elucidate the effects of Funneliformis mosseae and Serendipita indica on the growth, root cross-section structure, and root transcriptional responses of peach under waterlogging stress, with a focus on polyamine and proline metabolism. Genes and transcription factors associated with secondary cell wall biosynthesis were selected, and their expression profiles were analyzed.

View Article and Find Full Text PDF

The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!