Picosecond lasers: the next generation of short-pulsed lasers.

Semin Cutan Med Surg

Dr Brandt Dermatology Associates, 4425 Ponce de Leon Boulevaqrd, Suite 200, Coral Gables, Florida

Published: December 2014

Selective photothermolysis, first discussed in the context of targeted microsurgery in 1983, proposed that the optimal parameters for specific thermal damage rely critically on the duration over which energy is delivered to the tissue. At that time, nonspecific thermal damage had been an intrinsic limitation of all commercially available lasers, despite efforts to mitigate this by a variety of compensatory cooling mechanisms. Fifteen years later, experimental picosecond lasers were first reported in the dermatological literature to demonstrate greater efficacy over their nanosecond predecessors in the context of targeted destruction of tattoo ink. Within the last 4 years, more than a decade after those experiments, the first commercially available cutaneous picosecond laser unit became available (Cynosure, Westford, Massachusetts), and several pilot studies have demonstrated its utility in tattoo removal. An experimental picosecond infrared laser has also recently demonstrated a nonthermal tissue ablative capability in soft tissue, bone, and dentin. In this article, we review the published data pertaining to dermatology on picosecond lasers from their initial reports to the present as well as discuss forthcoming technology.

Download full-text PDF

Source
http://dx.doi.org/10.12788/j.sder.0117DOI Listing

Publication Analysis

Top Keywords

picosecond lasers
12
context targeted
8
thermal damage
8
experimental picosecond
8
picosecond
5
lasers generation
4
generation short-pulsed
4
lasers
4
short-pulsed lasers
4
lasers selective
4

Similar Publications

Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.

View Article and Find Full Text PDF

Recently, ultrafast laser direct writing has become an effective method for preparing flexible films with micro-nano structures. However, effective control of laser parameters to obtain acceptable micro-nano structures and the effect of micro-nano structure sizes on function of the film remain challenges. Additionally, flexible films with high X-band transmittance are urgently required in aerospace and other fields.

View Article and Find Full Text PDF

In microfluidic chips, glass free-form microchannels have obvious advantages in thermochemical stability and biocompatibility compared to polymer-based channels, but they face challenges in processing morphology and quality. Hence, picosecond laser etching with galvanometer scanning is proposed to machine spiral microfluidic channels on a glass substrate. The objective is to disperse and sort microparticles from a glass microchip that is difficult to cut.

View Article and Find Full Text PDF

Melasma significantly impacts life quality, and while various laser therapies show promise, rigorous comparative studies, especially between the novel Picosecond Alexandrite Laser (PSAL) and the traditional combined modality of Q-switched and Long-pulse Nd: YAG Lasers (QLNYL), are notably lacking. This study aims to fill this gap by evaluating the efficacy and safety of these modalities, providing insights into their comparative advantages for clinical practice. In a prospective, evaluator-blinded study, 40 participants with Fitzpatrick Skin Types (FST) III and IV underwent three treatment sessions at four-week intervals with either PSAL or QLNYL.

View Article and Find Full Text PDF

The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!