In this paper, a highly parallel coupled electromechanical model of the heart is presented and assessed. The parallel-coupled model is thoroughly discussed, with scalability proven up to hundreds of cores. This work focuses on the mechanical part, including the constitutive model (proposing some modifications to pre-existent models), the numerical scheme and the coupling strategy. The model is next assessed through two examples. First, the simulation of a small piece of cardiac tissue is used to introduce the main features of the coupled model and calibrate its parameters against experimental evidence. Then, a more realistic problem is solved using those parameters, with a mesh of the Oxford ventricular rabbit model. The results of both examples demonstrate the capability of the model to run efficiently in hundreds of processors and to reproduce some basic characteristic of cardiac deformation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.1494DOI Listing

Publication Analysis

Top Keywords

coupled electromechanical
8
model
8
electromechanical model
8
model heart
8
heart parallel
4
parallel finite
4
finite element
4
element formulation
4
formulation paper
4
paper highly
4

Similar Publications

An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy.

View Article and Find Full Text PDF

As a category of polymeric materials, soft dielectrics, such as most elastomers and rubber-like materials, have shown great potential for extensive applications in various fields. Owing to their intriguing electromechanical coupling behaviors, the morphological instabilities in soft dielectrics have been an active research field in recent years. In this work, the recent progress in experimental and theoretical research on their electromechanical morphological instabilities is reviewed, especially regarding the theoretical aspect.

View Article and Find Full Text PDF

Boosting the Actuation Performance of a Dynamic Supramolecular Polyurethane-Urea Elastomer via Kinetic Control.

ACS Appl Mater Interfaces

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process.

View Article and Find Full Text PDF

Reinvestigating atomic ordering in KNaNbOand its impact on ferroelectric properties.

J Phys Condens Matter

January 2025

Physics, Indian Institute of Technology Banaras Hindu University, Indian Institute of Technology (Banaras Hindu University), Department of Physics, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.

In the present work, we reinvestigate the atomic ordering of a Pb-free Morphotropic Phase Boundary (MPB) composition viz., K0.5Na0.

View Article and Find Full Text PDF

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!