This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357912PMC

Publication Analysis

Top Keywords

50% maximal
12
cardiorespiratory variables
8
variables dorsally
8
dorsally recumbent
8
recumbent horses
8
horses anesthetized
8
anesthetized guaifenesin-ketamine-xylazine
8
guaifenesin-ketamine-xylazine spontaneously
8
spontaneously breathing
8
breathing 50%
8

Similar Publications

Investigating muscle architecture in static and dynamic conditions is essential to understand muscle function and muscle adaptations. Muscle architecture analysis, primarily through extended field-of-view ultrasound imaging, offers high reliability at rest but faces limitations during dynamic conditions. Traditional methods often involve "best fitting" straight lines to track muscle fascicles, leading to possible errors, especially with longer fascicles or those with nonlinear paths.

View Article and Find Full Text PDF

Machine learning-based pan-cancer study of classification and mechanism of BRAF inhibitor resistance.

Transl Cancer Res

December 2024

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Background: V-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor (BRAFi) therapy resistance affects approximately 15% of cancer patients, leading to disease recurrence and poor prognosis. The aim of the study was to develop a machine-learning based method to identify patients who are at high-risk of BRAFi resistance and potential biomarker.

Methods: From Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases, we collected RNA sequencing and half maximal inhibitory concentration (IC) data from 235 pan-cancer cell lines and then identified 37 significant differential expression genes associated with BRAFi resistance.

View Article and Find Full Text PDF

Several screening methods are used to detect cervical cancer, with Pap smear test is considered as one of the most reliable screening methods to diagnose cervical cancer. The aim of this study was to investigate the factors associated with awareness of undergoing Pap smear tests among Jordanian women. A cross-sectional study was conducted among 525 Jordanian women attending the outpatient maternity hospital consecutively from February to July 2023.

View Article and Find Full Text PDF

We present, for the first time, to our knowledge, power splitters with multiple channel configurations in one-dimensional grating waveguides (1DGWs) that maintain crystal lattice-sensitive Bloch mode profiles without perturbation across all output channels, all within an ultra-miniaturized footprint of just 2.1 × 2.2 μm.

View Article and Find Full Text PDF

Dynamic transverse mode instability (TMI) has become one of the primary limitations for power scaling of high-power fiber lasers. Experimental evidence has shown that static mode degradation can suppress the dynamic TMI effect. This study reveals the physical mechanisms behind the mitigation of dynamic TMI in two-mode fiber lasers through static mode degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!