Two recent studies used a virtual hunting assay and functional imaging to identify prey-capture circuits in zebrafish. Together they show that the optic tectum and a pretectal region are two retinorecipient areas important for the recognition and capture of prey.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2015.02.005 | DOI Listing |
Curr Biol
January 2025
Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.
Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).
View Article and Find Full Text PDFScience
January 2025
Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
Vertebrates stabilize gaze using a neural circuit that transforms sensed instability into compensatory counterrotation of the eyes. Sensory feedback tunes this vestibulo-ocular reflex throughout life. We studied the functional development of vestibulo-ocular reflex circuit components in the larval zebrafish, with and without sensation.
View Article and Find Full Text PDFCurr Opin Neurobiol
December 2024
Departments of Otolaryngology, Neuroscience, and the Neuroscience Institute, NYU Grossman School of Medicine, USA. Electronic address:
Motor neurons have highly diverse anatomical, functional and molecular features, and differ significantly in their susceptibility in disease. Extraocular motor neurons, residing in the oculomotor, trochlear and abducens cranial nuclei (nIII, nIV and nVI), control eye movements. Recent work has begun to clarify the developmental mechanisms by which functional diversity among extraocular motor neurons arises.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!