Very often conventional therapy, i.e. chemotherapeutic treatment, develops resistance in cancer cells and fails to be effective against disease states. An alternative strategy or a new entity may resolve the problem. Interestingly, the microbial world has begun to be explored in medicinal research as a potential new source to deliver bio-active molecules such as sphingolipids for efficacious cancer treatment. A sphingolipid of microbial origin, especially from Leishmania donovani (LSPL), is a novel entity which may exert anti-cancer activity by regulating cellular growth. The present study reveals that among a range of cancer cells evaluated, LSPL-1 (a component of LSPL) reduces cell viability, annexin exposures and arrests cell cycle in B16F10 cells in a concentration and time dependent manner. Flowcytometric analysis showed that it alters mitochondrial membrane potential and generates a number of ROS positive melanoma cells. It activates p53 at serine anchor region via up-regulation of p21 subunit along with PUMA and NOXA. It also exerts activity in vivo by reducing tumor micro vessel and mitotic index while simultaneously improving the survival rate. The inflammatory responses including elevated level of cytokine-chemokine and increased expression of PCNA and F480 are subdued by LSPL-1 treatment in tumour bearing mice. Besides, it reduces the metastatic outburst of angiogenic factors like VEGF, Ang-2, and CD34 through the involvement of several growth promoting factors. These findings indicate that LSPL-1 may be explored as a potent entity against melanoma growth and the associated angiogenic promotion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-015-1121-5DOI Listing

Publication Analysis

Top Keywords

cancer cells
8
antineoplastic impact
4
impact leishmanial
4
leishmanial sphingolipid
4
sphingolipid tumour
4
growth
4
tumour growth
4
growth regulation
4
regulation angiogenic
4
angiogenic event
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!