Cryptic 3' mRNA processing signals hinder the expression of Schistosoma mansoni integrins in yeast.

Mol Biochem Parasitol

Biomedizinisches Forschungszentrum Seltersberg (BFS), Institut für Parasitologie, Schubertstraße 81, Gießen 35392, Germany. Electronic address:

Published: January 2016

The expression of parasite genes has often proven difficult in heterologous systems such as yeast or E. coli. Most often, promoter choice and codon usage were hypothesised to be the main reason for expression failures. The trematode parasite Schistosoma mansoni has five integrin genes named Smα-Int1-4 and Smβ-Int1, which we aimed to express in the yeast Saccharomyces cerevisiae. This has not been achieved, however, as only Smβ-Int1 integrin could be expressed. When the four α integrins were driven by a stronger promoter, this enabled Smα-Int1 to be expressed as well, but the remaining integrins, Smα-Int2-4, still could not be expressed. Evidence from RT-PCR experiments suggested that this was due to premature transcription termination. Using detailed in silico sequence analyses we identified AT-rich stretches in these integrin genes, which have high similarity to yeast mRNA 3'-end processing signals. We hypothesised that these signals were causing the premature truncation. To test this, we designed an optimised version of Smα-Int3, in which the sequence was modified to replace the yeast 3' processing signals. This strategy allowed us to express Smα-Int3 integrin successfully in S. cerevisiae. These findings show that the misinterpretation of AT-rich sequences by yeast 3'-mRNA processing machinery can cause problems when attempting to express genes containing such sequences in this host.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2015.03.005DOI Listing

Publication Analysis

Top Keywords

processing signals
12
schistosoma mansoni
8
integrin genes
8
yeast
6
cryptic mrna
4
processing
4
mrna processing
4
signals
4
signals hinder
4
hinder expression
4

Similar Publications

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Efficient visual word recognition presumably relies on orthographic prediction error (oPE) representations. On the basis of a transparent neurocognitive computational model rooted in the principles of the predictive coding framework, we postulated that readers optimize their percept by removing redundant visual signals, allowing them to focus on the informative aspects of the sensory input (i.e.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!