The anaerobic ammonium oxidation (anammox) process is widely used for N-rich wastewater treatment. In the current research the deammonification reactor in a reverse order (first anammox, then the nitrifying biofilm cultivation) was started up with a high maximum N removal rate (1.4 g N m(-2) d(-1)) in a moving bed biofilm reactor. Cultivated biofilm total nitrogen removal rates were accelerated the most by anammox intermediate - nitric oxide (optimum 58 mg NO-N L(-1)) addition. Furthermore, NO was added in order to eliminate inhibition caused by nitrite concentrations (>50 mg [Formula: see text]) increasing [Formula: see text] (2/1, respectively) along with a higher ratio of [Formula: see text] (0.6/1, respectively) than stoichiometrical for this optimal NO amount added during batch tests. Planctomycetales clone P4 sequences, which was the closest (98% and 99% similarity, respectively) relative to Candidatus Brocadia fulgida sequences quantities increase to 1 × 10(6) anammox gene copies g(-1) total suspended solids to till day 650 were determined by quantitative polymerase chain reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2015.1034791DOI Listing

Publication Analysis

Top Keywords

[formula text]
12
nitric oxide
8
anammox
5
oxide anammox
4
anammox recovery
4
recovery nitrite-inhibited
4
nitrite-inhibited deammonification
4
deammonification system
4
system anaerobic
4
anaerobic ammonium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!