Omics for aquatic ecotoxicology: control of extraneous variability to enhance the analysis of environmental effects.

Environ Toxicol Chem

Emerging Methods Section, Aquatic Contaminants Research Division, Water Science & Technology Directorate, Environment Canada, Ontario, Canada.

Published: August 2015

There are multiple sources of biological and technical variation in a typical ecotoxicology study that may not be revealed by traditional endpoints but that become apparent in an omics dataset. As researchers increasingly apply omics technologies to environmental studies, it will be necessary to understand and control the main source(s) of variability to facilitate meaningful interpretation of such data. For instance, can variability in omics studies be addressed by changing the approach to study design and data analysis? Are there statistical methods that can be employed to correctly interpret omics data and make use of unattributed, inherent variability? The present study presents a review of experimental design and statistical considerations applicable to the use of omics methods in systems toxicology studies. In addition to highlighting potential sources that contribute to experimental variability, this review suggests strategies with which to reduce and/or control such variability so as to improve reliability, reproducibility, and ultimately the application of omics data for systems toxicology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.3002DOI Listing

Publication Analysis

Top Keywords

omics data
8
systems toxicology
8
omics
7
variability
5
omics aquatic
4
aquatic ecotoxicology
4
ecotoxicology control
4
control extraneous
4
extraneous variability
4
variability enhance
4

Similar Publications

HighDimMixedModels.jl: Robust high-dimensional mixed-effects models across omics data.

PLoS Comput Biol

January 2025

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

High-dimensional mixed-effects models are an increasingly important form of regression in which the number of covariates rivals or exceeds the number of samples, which are collected in groups or clusters. The penalized likelihood approach to fitting these models relies on a coordinate descent algorithm that lacks guarantees of convergence to a global optimum. Here, we empirically study the behavior of this algorithm on simulated and real examples of three types of data that are common in modern biology: transcriptome, genome-wide association, and microbiome data.

View Article and Find Full Text PDF

Identification of differentially expressed non-coding RNAs in the plasma of women with preterm birth.

RNA Biol

December 2025

Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan.

This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the analyses.

View Article and Find Full Text PDF

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Efficacy, safety, and multi-omics analysis of pembrolizumab combined with nab-paclitaxel and platinum as first-line treatment in patients with recurrent or metastatic head and neck squamous cell carcinoma: A single-arm phase 2 study.

Chin J Cancer Res

December 2024

Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.

Objective: Based on the findings of the KEYNOTE-048 study, pembrolizumab in combination with platinum and fluorouracil is the standard first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). The efficacy and safety of pembrolizumab combined with nab-paclitaxel and platinum in such patients remain unexplored.

Methods: This single-arm phase 2 study enrolled patients with R/M HNSCC who received pembrolizumab (200 mg), nab-paclitaxel (260 mg/m²), and either cisplatin (75 mg/m²) or carboplatin [area under the curve (AUC) 5] every 21 d for up to six cycles, followed by pembrolizumab maintenance therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!