MicroRNA-200b and microRNA-200c (miR-200b/c) are 2 of the most frequently upregulated oncomiRs in colorectal cancer cells. The role of miR-200b/c during colorectal tumorigenesis, however, remains unclear. In the present study, we report that miR-200b/c can promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs (RECK). Firstly, bioinformatics analysis predicted RECK as a conserved target of miR-200b/c. By overexpressing or knocking down miR-200b/c in colorectal cancer cells, we experimentally validated that miR-200b/c are direct regulators of RECK. Secondly, an inverse correlation between the levels of miR-200b/c and RECK protein was found in human colorectal cancer tissues and cell lines. Thirdly, we demonstrated that repression of RECK by miR-200b/c consequently triggered SKP2 (S-phase kinase-associated protein 2) elevation and p27(Kip1) (also known as cyclin-dependent kinase inhibitor 1B) degradation in colorectal cancer cells, which eventually promotes cancer cell proliferation. Finally, promoting tumor cell growth by miR-200b/c-targeting RECK was also observed in the xenograft mouse model. Taken together, our results demonstrate that miR-200b/c play a critical role in promoting colorectal tumorigenesis through inhibiting RECK expression and subsequently triggering SKP2 elevation and p27(Kip1) degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615722PMC
http://dx.doi.org/10.1080/15476286.2015.1017208DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
24
cancer cell
12
cell proliferation
12
cancer cells
12
mir-200b/c
9
microrna-200b microrna-200c
8
colorectal
8
promote colorectal
8
proliferation targeting
8
targeting reversion-inducing
8

Similar Publications

Background: Anastomotic leakage (AL) is a major complication in colorectal surgery, particularly following rectal cancer surgery, necessitating effective prevention strategies. The increasing frequency of colorectal resections and anastomoses during cytoreductive surgery (CRS) for peritoneal carcinomatosis further complicates this issue owing to the diverse patient populations with varied tumor distributions and surgical complexities. This study aims to assess and compare AL incidence and associated risk factors across conventional colorectal cancer surgery (CRC), gastrointestinal CRS (GI-CRS), and ovarian CRS (OC-CRS), with a secondary focus on evaluating the role of protective ostomies.

View Article and Find Full Text PDF

Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas.

Discov Oncol

January 2025

Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.

The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.

View Article and Find Full Text PDF

Background: Patients with rectal cancer often experience adverse effects on urinary, sexual, and digestive functions. Despite recognised impacts and available treatments, they are not fully integrated into follow-up protocols, thereby hindering appropriate interventions. The aim of the study was to discern the activities conducted in our routine clinical practice outside of clinical trials.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

ATRX loss inhibits DDR to strengthen radio-sensitization in p53-deficent HCT116 cells.

Sci Rep

January 2025

NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.

Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!