Atomistic simulations have been performed to investigate the microscopic structural organization of aqueous solutions of trihexyltetradecylphosphonium bis(oxalato)borate ([P6,6,6,14][BOB]) ionic liquid (IL). The evolution of the microscopic liquid structure and the local ionic organization of IL/water mixtures as a function of the water concentration is visualized and systematically analyzed via radial and spatial distribution functions, coordination numbers, hydrogen bond network, and water clustering analysis. The microscopic liquid structure in neat IL is characterized by a connected apolar network composed of the alkyl chains of [P6,6,6,14] cations and isolated polar domains consisting of the central segments of [P6,6,6,14] cations and [BOB] anions, and the corresponding local ionic environment is described by direct contact ion pairs. In IL/water mixtures with lower water mole fractions, the added water molecules are dispersed and embedded in cavities between neighboring ionic species and the local ionic structure is characterized by solvent-shared ion pairs through cation-water-anion triple complexes. With a gradual increase in the water concentration in IL/water mixtures, the added water molecules tend to aggregate and form small clusters, intermediate chain-like structures, large aggregates, and eventually a water network in water concentrated simulation systems. A further progressive dilution of IL/water mixtures leads to the formation of self-organized micelle-like aggregates characterized by a hydrophobic core and hydrophilic shell consisting of the central polar segments in [P6,6,6,14] cations and [BOB] anions in a highly branched water network. The striking structural evolution of the [P6,6,6,14][BOB] IL/water mixtures is rationalized by the competition between favorable hydrogen bonded interactions and strong electrostatic interactions between the polar segments in ionic species and the dispersion interactions between the hydrophobic alkyl chains in [P6,6,6,14] cations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.5b00667 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
The studies on ionic liquids (ILs) and their interaction with different solvents have always been an interesting topic for experimental and computational chemists. Recently, however, deep insights on the molecular structures of the IL-water binary mixtures have been mainly performed through classical simulations. Here, a comprehensive quantum mechanical study is presented on seven 1-butyl-3-methylimidazolium-based ILs in the absence and presence of water.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFSci Rep
July 2024
Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071, Murcia, Spain.
This study presents new ionanofluids (INF) composed of 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) and graphene oxide (GO) nanoparticles which have been assessed for the first time in an experimental flat plate solar thermal collector (FPSC). For this purpose, four types of INFs were synthesized, maintaining a constant concentration of GO nanoparticles dispersed in different base fluids: ionic liquid (IL/GO), a mixture of ionic liquid and water in varying concentrations (IL-water (75-25)%/GO and IL-water (50-50)%/GO), and water (Water/GO). These four INFs were characterized and their thermophysical and physicochemical properties were determined.
View Article and Find Full Text PDFLangmuir
May 2024
Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany.
In this study, we systematically analyze the surface tension and Hansen solubility parameters (HSPs) of imidazolium-based ionic liquids (ILs) with different anions ([NTf], [PF], [I], and [Br]). These anions are combined with the classical 1-alkyl-3-methyl-substituted imidazolium cations ([CCIm]) and a group of oligoether-functionalized imidazolium cations ([(mPEG)Im]) based on methylated polyethylene glycol (mPEG). In detail, the influences of the length of the alkyl- and the mPEG-chain, the anion size, and the water content are investigated experimentally.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2023
Department of Nuclear Physics Research Methods, Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia.
The unique physical and chemical properties of ionic liquids (ILs) determine their numerous applications in "green" chemistry and material science. Recently, systems based on ILs have been considered to be promising for use in a new generation of electrochemical devices. The results of a nuclear magnetic resonance (NMR) study of the microstructure of 1-butyl-3-methylimidazolium chloride (IL)/water mixtures in the presence of Al cations are presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!