Radiological protection evaluation of the Bucharest Tandetron 3 MV accelerator.

J Radiol Prot

Horia Hulubei-National Institute for Physics and Nuclear Engineering, Reactorului 30, PO BOX MG-6, Bucharest, Măgurele, Romania. Physics Department, University Politehnica of Bucharest, Splaiul Independenţei 313, RO-060042, Bucharest, Romania.

Published: June 2015

AI Article Synopsis

Article Abstract

Low energy heavy charged particle accelerators are generators of ionizing radiation, due to the ion beam interactions into the machine components, targets and surrounding materials. Nowadays there are available computational tools allowing realistic estimates of radiation doses and residual activity of the activated components. These evaluations are further used to design the radiological safety system required by licensing and operation of the equipment.This paper presents results of measurements and numerical simulations of the radiation doses and residual activity, at the recently commissioned Bucharest 3 MV Cockcroft-Walton type Tandetron accelerator presently used mainly for Ion Beam Analysis (IBA) research.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0952-4746/35/2/285DOI Listing

Publication Analysis

Top Keywords

ion beam
8
radiation doses
8
doses residual
8
residual activity
8
radiological protection
4
protection evaluation
4
evaluation bucharest
4
bucharest tandetron
4
tandetron 3 mv
4
3 mv accelerator
4

Similar Publications

Gas-Phase Scattering of Transition Metal Atoms Fe, Ir, and Pt with CH, O, and CO.

J Phys Chem A

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China.

Understanding the interactions between transition metal atoms and molecules is important for the study of various related chemical and physical processes. In this study, we have investigated collisions between iron (Fe), iridium (Ir), and platinum (Pt) and the small molecules CH, O, and CO using a crossed-beam and time-sliced ion velocity map imaging technique. Elastic collisions were observed in all cases, except for collisions of Pt with O and CO.

View Article and Find Full Text PDF

Beam-divergence characteristics of single negative ion beamlet have been experimentally investigated with a superimposition of a controlled perturbation of a radio frequency wave (RF) field in a filament-arc discharge negative ion source. Oscillations of a negative-ion beamlet width and axis responding to the RF perturbation were observed, which may be a cause of the larger beam divergence angle of the RF negative ion source for ITER. It is pointed out that the oscillation of the beamlet width depends on the perveance and on an RF frequency such that the oscillation is suppressed at perveance-matched conditions and at low RF frequency.

View Article and Find Full Text PDF

Growth of lithium whiskers or dendrites is the major obstacle towards safe and stable utilization of lithium metal anodes in rechargeable batteries. In this study, we look deeper into the mechanism of lithium electrodeposition. We find that before lithium whisker or dendrite nucleation occurs, lithium is deposited into the grain boundaries of the metal electrode, which we directly observed in the focused ion beam cross-sections of the lithium electrode.

View Article and Find Full Text PDF

Fabry-Perot (FP) lasers with a cavity length shorten down to 50 µm were investigated. One or two laser mirrors were formed by focused ion beam etching. InGaAs quantum dots of high density were used as the laser active region.

View Article and Find Full Text PDF

Accurate dose predictions are crucial to maximizing the benefits of carbon-ion therapy. Carbon beams incident on the human body cause nuclear interactions with tissues, resulting in changes in the constituent nuclides and leading to dose errors that are conventionally corrected using conventional single-energy computed tomography (SECT). Dual-energy computed tomography (DECT) has frequently been used for stopping power estimation in particle therapy and is well suited for correcting nuclear reactions because of its detailed body-tissue elemental information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!