Radiolabeled metabolite and disposition studies in support of safety assessment.

Bioanalysis

Department of Environmental Sciences, Charles River, Edinburgh, EH33 2NE, UK.

Published: December 2015

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio.15.18DOI Listing

Publication Analysis

Top Keywords

radiolabeled metabolite
4
metabolite disposition
4
disposition studies
4
studies support
4
support safety
4
safety assessment
4
radiolabeled
1
disposition
1
studies
1
support
1

Similar Publications

Background: Elinzanetant is a dual neurokinin-1,3 receptor antagonist in development for the treatment of menopausal vasomotor symptoms. The objectives of these studies were to characterize the mass balance and biotransformation of elinzanetant.

Methods: In the clinical evaluation, whole blood, plasma, urine, and feces were collected from healthy fasted male volunteers (n = 6) following a single dose of 120 mg [C]-elinzanetant oral suspension for analysis of total radioactivity and metabolite profiling.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by the presence of extracellular amyloid plaques consisting of β-amyloid peptides (Aβ) and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau (pTau) protein in the brain. Genetic and animal studies strongly indicate that Aβ, tau and neuroinflammation play important roles in the pathogenesis of AD. Several staging models showed that NFTs correlated well with the disease progression.

View Article and Find Full Text PDF

Purpose: The study aims to investigate the absorption, metabolism, and excretion of donafenib, a deuterated derivative of sorafenib, in healthy Chinese male volunteers.

Methods: Six healthy Chinese male volunteers were administered a single oral dose of 300 mg donafenib containing 120 µCi of [14 C]-donafenib. The study involved collecting and analyzing plasma, urine, and feces samples to determine the recovery and distribution of total radioactivity, identify metabolites, and assess the metabolic pathways of donafenib.

View Article and Find Full Text PDF

ALPK1 is an atypical protein kinase that is activated during bacterial infection by ADP-heptose and phosphorylates TIFA to activate a cell signaling pathway. In contrast, specific mutations in ALPK1 allow it to also be activated by endogenous human nucleotide sugars such as UDP-mannose, leading to the phosphorylation of TIFA in the absence of infection. This protocol describes a quantitative, cell-free phosphorylation assay that can directly measure the catalytic activity of wildtype and disease-causing ALPK1 in the presence of different nucleotide sugars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!