Flexible memory is the fundamental component for data processing, storage, and radio frequency communication in flexible electronic systems. Among several emerging memory technologies, phase-change random-access memory (PRAM) is one of the strongest candidate for next-generation nonvolatile memories due to its remarkable merits of large cycling endurance, high speed, and excellent scalability. Although there are a few approaches for flexible phase-change memory (PCM), high reset current is the biggest obstacle for the practical operation of flexible PCM devices. In this paper, we report a flexible PCM realized by incorporating nanoinsulators derived from a Si-containing block copolymer (BCP) to significantly lower the operating current of the flexible memory formed on plastic substrate. The reduction of thermal stress by BCP nanostructures enables the reliable operation of flexible PCM devices integrated with ultrathin flexible diodes during more than 100 switching cycles and 1000 bending cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b00230 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
The application of organic solid-liquid phase change materials (PCMs) is limited for the leakage problem after phase change and high rigidity. In this work, a novel flexible solid-solid PCM (DXPCM) was synthesized using a block copolymerization process with polyethylene glycol (PEG) as the energy storage segment. The phase transition temperature (from 36.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Personal thermal protection is crucial in extreme temperature environments, and the rising global temperatures present significant challenges in managing heat stress for individuals. Phase-change materials (PCMs) can absorb or release heat during phase transition to maintain a constant temperature, thus making them ideal innovative thermal protection materials. However, it is currently a bottleneck issue for using PCMs in wearable thermal protection systems due to a balance between the mechanical properties, latent heat, temperature resistance, and rapid response on demand.
View Article and Find Full Text PDFNano Lett
December 2024
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
Flexible triboelectric nanogenerators (TENGs) are highly advantageous for human-centered monitoring due to their self-sustaining energy and high output performance. However, temperature fluctuations that limit thermal comfort have hindered their practical advancement. In this study, flexible titanium dioxide-silk fibroin@phase change microcapsule nanofiber films (TiO-SF@PCM NFs) were successfully developed using an efficient electro-blown spinning (EBS) technique, with exceptional triboelectric output and superior temperature regulation capabilities.
View Article and Find Full Text PDFTrials
November 2024
Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Australia.
Materials (Basel)
October 2024
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
Personal thermal management materials integrated with phase-change materials have significant potential to satisfy human thermal comfort needs and save energy through the efficient storage and utilization of thermal energy. However, conventional organic phase-change materials in a solid state suffer from rigidity, low thermal conductivity, and leakage, making their application challenging. In this work, polyethylene glycol (PEG) was chosen as the phase-change material to provide the energy storage density, polyethylene oxide (PEO) was chosen to provide the backbone structure of the three-dimensional polymer network and cross-linked with the PEG to provide flexibility, and carbon nanotubes (CNTs) were used to improve the mechanical and thermal conductivity of the material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!