Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The transition flux formula for the coupling matrix element of long-distance electron transfer reactions is discussed. Here we present a new derivation which is based on the Golden Rule approach. The electronic Franck-Condon factor that appears in the multielectronic formulation of the coupling element is discussed using the concept of tunneling time. An application of the tunneling flux theory to electron transfer reactions in a model system based on the low-potential heme and high-potential heme (heme bL)/(heme bH) redox pair of ubiquinol:cytochrome c oxidoreductase complex is described; the results are compared to those obtained by measuring energy splitting of the donor/acceptor multielectronic states and the direct calculation method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp512699a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!