Streamline based design guideline for deterministic microfluidic hydrodynamic single cell traps.

Biomicrofluidics

Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia 20052, USA.

Published: March 2015

A prerequisite for single cell study is the capture and isolation of individual cells. In microfluidic devices, cell capture is often achieved by means of trapping. While many microfluidic trapping techniques exist, hydrodynamic methods are particularly attractive due to their simplicity and scalability. However, current design guidelines for single cell hydrodynamic traps predominantly rely on flow resistance manipulation or qualitative streamline analysis without considering the target particle size. This lack of quantitative design criteria from first principles often leads to non-optimal probabilistic trapping. In this work, we describe an analytical design guideline for deterministic single cell hydrodynamic trapping through the optimization of streamline distributions under laminar flow with cell size as a key parameter. Using this guideline, we demonstrate an example design which can achieve 100% capture efficiency for a given particle size. Finite element modelling was used to determine the design parameters necessary for optimal trapping. The simulation results were subsequently confirmed with on-chip microbead and white blood cell trapping experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352164PMC
http://dx.doi.org/10.1063/1.4914469DOI Listing

Publication Analysis

Top Keywords

single cell
16
design guideline
8
guideline deterministic
8
cell hydrodynamic
8
particle size
8
cell
7
design
6
trapping
6
streamline based
4
based design
4

Similar Publications

Genome-wide association studies are enriched for interacting genes.

BioData Min

January 2025

The Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.

Background: With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk.

View Article and Find Full Text PDF

Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.

View Article and Find Full Text PDF

Chemo-optogenetic Dimerization Dissects Complex Biological Processes.

Small Methods

January 2025

Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China.

Light offers superior control in terms of high temporal precision, high spatial precision, and non-invasiveness for the regulation of cellular functions. In recent years, chemical biologists have adopted chemo-optogenetic dimerization approaches, such as photo-triggered chemical inducers of dimerization (pCIDs), as a general tool for spatiotemporal regulation of cellular functions. Traditional chemo-optogenetic dimerization triggers either a single ON or a single OFF of cellular activity.

View Article and Find Full Text PDF

Organic dyes play a crucial role in live-cell imaging because of their advantageous properties, such as photostability and high brightness. Here we introduce a super-photostable and bright organic dye, Phoenix Fluor 555 (PF555), which exhibits an order-of-magnitude longer photobleaching lifetime than conventional organic dyes without the requirement of any anti-photobleaching additives. PF555 is an asymmetric cyanine structure in which, on one side, the indole in the conventional Cyanine-3 is substituted with 3-oxo-quinoline.

View Article and Find Full Text PDF

Resolving tissue complexity by multimodal spatial omics modeling with MISO.

Nat Methods

January 2025

Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Spatial molecular profiling has provided biomedical researchers valuable opportunities to better understand the relationship between cellular localization and tissue function. Effectively modeling multimodal spatial omics data is crucial for understanding tissue complexity and underlying biology. Furthermore, improvements in spatial resolution have led to the advent of technologies that can generate spatial molecular data with subcellular resolution, requiring the development of computationally efficient methods that can handle the resulting large-scale datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!