Background And Purpose: The aim of this study was to devise a nanoemulsified carrier system (CopNEC) to improve the oral delivery of amphotericin B (AmB) by increasing its oral bioavailability and synergistically enhance its antileishmanial activity with copaiba oil (Cop).
Experimental Approach: The AmB encapsulated NEC (CopNEC-AmB) comprised of Cop, d-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine was prepared by high-pressure homogenization method. Stability study of CopNEC-AmB was carried out in simulated gastric fluid and simulated intestinal fluid. The CopNEC-AmB and plain AmB were compared as regards their in vitro antileishmanial activity, pharmacokinetics, organ distribution and toxicity.
Key Results: The optimal CopNEC-AmB had a small globule size, low polydispersity index, high ζ potential and encapsulation efficiency. The high resolution transmission electron microscopy illustrated spherical particle geometry with homogeny in their sizes. The optimal CopNEC-AmB was found to be stable in gastrointestinal fluids showing insignificant changes in globule size and encapsulation efficiency. The AUC0-48 value of CopNEC-AmB in rats was significantly improved showing 7.2-fold higher oral bioavailability than free drug. The in vitro antileishmanial activity of CopNEC-AmB was significantly higher than that of the free drug as Cop synergistically enhanced the antileishmanial effect of AmB by causing drastic changes in the morphology of Leishmania parasite and rupturing its plasma membrane. The CopNEC-AmB showed significantly less haemolytic toxicity and cytotoxicity and did not change the histopathology of kidney tissues as compared with AmB alone.
Conclusions And Implications: This prototype CopNEC formulation showed improved bioavailability and had a non-toxic synergistic effect on the antileishmanial activity of AmB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507162 | PMC |
http://dx.doi.org/10.1111/bph.13149 | DOI Listing |
J Biomol Struct Dyn
January 2025
Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan.
Four organotin(IV) carboxylate complexes; (CH)SnL (), CHSnL (), (CH)SnL () and (CH)SnL () are synthesized by the condensation reaction of organotin(IV) chlorides with sodium-4-chloro-2-methylphenoxyacetate (). The FT-IR spectra suggested bridging/chelating bidentate coordination of the ligand to the tin atom. Single-crystal XRD analysis authenticated the FT-IR findings for and .
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
December 2024
São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil. Electronic address:
Leishmaniasis is a neglected disease that remains with a limited number of drugs available for chemotherapy and has an increased drug resistance that affects treatment outcomes. Metal-based drugs such as cyclopalladated complex [Pd(dmba)(μ-N)] (CP2), a Leishmania topoisomerase IB inhibitor involved in calcium dysregulation and mitochondrial dysfunction of the parasite, had been an alternative to outline the appearance of chemoresistance. To identify new molecular targets and point out possible resistance mechanisms, a CP2-resistant Leishmania amazonensis (LaR) was selected by stepwise exposure to increasing drug pressure until a line capable of growth in 13.
View Article and Find Full Text PDFIn Silico Pharmacol
December 2024
Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.
Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.
View Article and Find Full Text PDFBioorg Chem
December 2024
Universidad de Buenos Aires, CONICET, Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina. Electronic address:
This work describes the synthesis and biological evaluation of hitherto unknown N-arylspermidine derivatives 3. Compounds 3 were efficiently prepared from cyclic amidines through a novel synthetic approach comprising alkylation with ω-halonitriles followed by reduction. The cyclic N-arylamidine directs the alkylation to the unsubstituted nitrogen and also provides the N-benzyl group present in the triamine after simultaneous reduction of the resulting quaternary salt 2 and the cyano group.
View Article and Find Full Text PDFChem Biodivers
December 2024
Universidad Nacional de Colombia, Antioquia, carrera 65 59a-110, 3840, Medellín, COLOMBIA.
Coumarin-chalcone hybrids are promising compounds that could be used as lead structures in the fight against parasitic diseases. In this work, sixteen hybrids of coumarin-chalcone (3-cinnamoyl-2H-chromen-2-ones) were synthesized, and their in vitro biological activity was evaluated against intracellular amastigotes of Leishmania braziliensis and Trypanosoma cruzi; as well as their cytotoxicity in the U-937 cell line. Compounds (E)-3-(3-(3-ethoxy-4-hydroxyphenyl)acryloyl)-7-methoxy-2H-chromen-2-one (H25) and (E)-7-(diethylamino)-3-(4-(methoxyphenyl)acryloyl)-2H-chromen-2-one (H12) showed the highest antileishmanial activity with EC50 values of 18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!