Rapid detection of organophosphorous (OP) compounds such as paraoxon would allow taking immediate decision on efficient decontamination procedures and could prevent further damage and potential casualties. In the present study, a biosensor based on nanomagnet-silica core-shell conjugated to organophosphorous hydrolase (OPH) enzyme was designed for detection of paraoxon. Coumarin1, a competitive inhibitor of the OPH enzyme, was used as a fluorescence-generating molecule. Upon excitation of cumarin1 located at the active site of the enzyme, i.e., OPH, the emitted radiations were intensified due to the mirroring effect of the nanomagnet-silica core-shell conjugated to the enzyme. In presence of paraoxon and consequent competition with the fluorophore in occupying enzyme's active site, a significant reduction in emitted radiations was observed. This reduction was proportional to paraoxon concentration in the sample. The method worked in the 10- to 250-nM concentration range had a low standard deviation (with a coefficient of variation (CV) of 6-10%), and the detection limit was as low as 5 × 10(-6) μM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-015-1579-1DOI Listing

Publication Analysis

Top Keywords

detection paraoxon
8
nanomagnet-silica core-shell
8
core-shell conjugated
8
oph enzyme
8
active site
8
emitted radiations
8
paraoxon
5
organophosphorus hydrolase-based
4
hydrolase-based biosensor
4
biosensor direct
4

Similar Publications

Defect-Engineered Luminescent Nanozyme with Enhanced Phosphohydrolase Activity for Degradation and Dual-Mode Detection of Paraoxon.

Small

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.

The excessive use of organophosphorus pesticides poses a substantial threat to both human health and the environment. Consequently, there is an urgent need for new methods that can quickly degrade and sensitively detect these compounds. A versatile nanozyme based on the biomimetic principle is an effective strategy to solve this problem.

View Article and Find Full Text PDF

This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.

View Article and Find Full Text PDF

Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g.

View Article and Find Full Text PDF

Summer profiles: Tracing currently used organophosphorus pollutants in the surface seawater of the Arctic Ocean.

Sci Total Environ

January 2025

Ministry of Natural Resources Key Laboratory for Polar Sciences, Polar Research Institute of China, NO.451, Jinqiao Road, Shanghai, 200136, China; Zhejiang University of Water Resources and Electric Power, NO. 508, Second Avenue, Hangzhou, Zhejiang, 310018, China. Electronic address:

We investigate the spatial distribution and potential ecological impact of Currently Used Organophosphorus Pollutants (CUOPPs) in the Arctic Ocean, focusing on the East Siberian Sea, Laptev Sea, and high Arctic regions. Analyzing surface water samples collected during a scientific expedition aboard the "Xuelong 2" in August and September 2021, we detected 38 out of 83 targeted CUOPPs, including Phorate, Paraoxon, and Azinphos-ethyl, with concentrations exhibiting significant geographical variance. The results reveal a pronounced increase in CUOPP concentrations towards the Arctic poles, diverging markedly from the patterns observed in the East China Sea, thereby highlighting distinct regional pollution profiles and environmental interactions.

View Article and Find Full Text PDF

Esterase-2 mutant-based nanostructured amperometric biosensors for the selective determination of paraoxon (Neurotoxin).

Anal Biochem

March 2025

Biosensors Research Lab, Zewail City of Science and Technology, 6th October City, Giza, 12578, Egypt; Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza, 2622, Egypt. Electronic address:

Organophosphate pesticides (OPs) are causing non-selective inhibition in enzymatic bioreceptors, thus the enzymatic-inhibition-based traditional assays are not suitable for their specific detection in food and environmental samples. Accordingly, a selective nanostructured electrochemical biosensing system was designed using six mutants of the esterase-2 (EST2 protein) enzymes from A. acidocaldarius to be exploited as targeting bio-receptors for the specific detection of OPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!