A sulfide-based SEI layer was formed on the surface of a LiNi0.5Mn1.5O4 cathode by using a sulfolane-carbonate mixed solvent electrolyte, which led to an improvement in the electrochemical performance. Moreover, the thermal stability of the LiNi0.5Mn1.5O4 cathode was also significantly improved in the presence of the SEI layer. ARC (Accelerating Rate Calorimetry) tests showed that the self-heating rate of the delithiated LiNi0.5Mn1.5O4 material in the sulfolane-carbonate electrolyte was suppressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp00799b | DOI Listing |
Polymers (Basel)
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia.
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.
Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China.
Local electrochemical deposition (LECD) is an innovative additive manufacturing technology capable of achieving precise deposition of metallic microstructures. This study delves into the ramifications of pivotal operational parameters-namely, the initial electrode gap, deposition voltage, and additive concentration-on the morphology of zinc microcolumns fabricated through LECD. A holistic approach integrating experimental methodologies with finite element simulations was adopted to scrutinize the influence of these variables on the microcolumns' dimensions, surface morphology, and structural integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!